Abstract

We demonstrate operation of a simple and reliable water-cooled femtosecond laser running at 10 kHz suitable for industrial micromachining applications. A laser geometry involving only a regenerative amplifier and delivering 3.5 W average power 60-fs pulses is compared to a more conventional architecture using an additional multi-pass amplifier. Both laser systems require a moderate pumping laser of ~30 W average power and deliver high-quality beams (M2<1.2).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
    [CrossRef]
  2. S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
    [CrossRef]
  3. S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
    [CrossRef]
  4. M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
    [CrossRef]
  5. J. Squier, G. Korn, G. Mourou, G. Vaillancourt, and M. Bouvier, "Amplification of femtosecond pulses at 10-kHz repetition rates in Ti :Al2O3," Opt. Lett. 18, 625-627 (1993).
    [CrossRef] [PubMed]
  6. Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
    [CrossRef]
  7. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, "11-W average power Ti :Sapphire amplifier system using downchirped pulse amplification," Opt. Lett. 29, 2665-2667 (2004).
    [CrossRef] [PubMed]
  8. I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40W Ti:Sapphire regenerative ring amplifier," Opt. Lett. 31, 2066-2068 (2006).
    [CrossRef] [PubMed]
  9. M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
    [CrossRef]
  10. N. Zhavoronkov and G. Korn, "Regenerative amplification of femtosecond laser pulses in Ti:Sapphire at multikilohertz repetition rates," Opt. Lett. 29, 198-200 (2004).
    [CrossRef] [PubMed]
  11. W. Koechner, "Thermal lensing in a Nd:YAG laser rod," Appl. Opt. 9, 2548-2553 (1970).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

2004 (2)

2002 (1)

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

2000 (3)

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
[CrossRef]

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

1996 (1)

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

1993 (1)

1970 (1)

Audouard, E.

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

Backus, S.

Bouvier, M.

Chambaret, J. P.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Cheng, Z.

M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
[CrossRef]

Chériaux, G.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Chichkov, B. N.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Endo, A.

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

Fortunier, R.

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

Fujikawa, S.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Gaudiosi, D. M.

Hentschel, M.

M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
[CrossRef]

Huot, N.

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

Ito, S.

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

Kapteyn, H. C.

Kobayashi, K.

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

Koechner, W.

Kohl, P.

Kojima, T.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Konno, S.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Korn, G.

Krausz, F.

M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
[CrossRef]

Laporte, P.

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

Le Blanc, C.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Le Harzic, R.

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

Lindner, F.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Lytle, A. L.

Matsushima, I.

Miura, T.

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

Momma, C.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Mourou, G.

Murnane, M. M.

Nabekawa, Y.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Nagaoka, H.

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

Nolte, S.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Sekikawa, T.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Spielmann, Ch.

M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
[CrossRef]

Squier, J.

Togashi, T.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Tomie, T.

Torizuka, K.

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

Tunnermann, A.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Vaillancourt, G.

Valette, S.

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

von Alvensleben, F.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Watanabe, S.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Wellegehausen, B.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Welling, H.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Yashiro, H.

Yasui, K.

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

Zavelani-Rossi, M.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Zhavoronkov, N.

Appl. Opt. (1)

Appl. Phys. B (4)

S. Ito, H. Nagaoka, T. Miura, K. Kobayashi, A. Endo, and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:Sapphire laser," Appl. Phys. B 74, 343-347 (2002).
[CrossRef]

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Chériaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti :sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Y. Nabekawa, T. Togashi, T. Sekikawa, S. Watanabe, S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "All-solid-state high-peak-power Ti :Sapphire laser system above 5-kHz repetition rate," Appl. Phys. B 70, S171-179 (2000).
[CrossRef]

M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TW optical pulses with a single stage Ti:Sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, S161-164 (2000).
[CrossRef]

Appl. Surf. Sci. (1)

S. Valette, R. Fortunier, E. Audouard, R. Le Harzic, N. Huot, and P. Laporte, "Heat affected zone in aluminium single crystals submitted to femtosecond laser irradiations," Appl. Surf. Sci. 239, 381-386 (2005).
[CrossRef]

Opt. Commun. (1)

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of Laser 1.

Fig. 2.
Fig. 2.

Stability and sensitivity curves as a function of the inverse of the thermal focal length. The calculations were conducted with parameters of Table 1. A mode diameter of ~300 μm together with a weak sensitivity to a cavity misalignment are obtained over the major part of the stability zone.

Fig. 3.
Fig. 3.

Experimental set-up of Laser 1: RR: retroreflector; Ti:Sa: Ti:Sapphire crystal (10×10×15 mm3); G1: 1200 lines/mm grating; G2: 1500 lines/mm grating; M1: flat dichroic mirror; M2: R=8 cm convex mirror; M3: R=50 cm concave mirror; M4: flat mirror; M5: R=275 mm convex mirror; M6: R=550 mm concave mirror; L1: f’=20 cm converging lens; L2: f’=50 cm converging lens; L3: f’=15 cm converging lens; L4: f’=-10 cm diverging lens; L5: f’=50 cm converging lens; TFP: thin film polarizer; KD*P: KD*P Pockels cell; FR: Faraday rotator; P: photodiode monitoring.

Fig. 4.
Fig. 4.

Amplification set-up of Laser 2. Ti:Sa: Ti:Sapphire crystal; M1: flat dichroic mirror; M2: R=10 cm concave mirror; M3: R=50 cm concave mirror; M4: flat mirror; M5: R=5 cm convex mirror; TFP: thin film polarizer; KD*P: KD*P Pockels cell; FR: Faraday rotator; L1: f’=40 cm converging lens; L2: f’=28.6 cm converging lens; L3: f’=100 cm converging lens; L4: f’=25 cm converging lens; P: photodiode monitoring.

Fig. 5.
Fig. 5.

Autocorrelation trace of compressed pulses of Laser 1, corresponding to a 60-fs pulse width.

Fig. 6.
Fig. 6.

Measurement of the M2 parameter of Laser 1 output beam running at 3.5 W output power after compression. Beam parameters of Mx 2=1.12 and MY 2=1.18 are deduced respectively in both transverse directions X and Y, typical for a high quality beam.

Fig. 7.
Fig. 7.

Optical microscope photographs of grooves machined in steel by 10 scans with a 60-fs pulse duration and a-b): 1.68J/cm2, 1.75mm/s, 1kHz or c-d): 1.84 J/cm2, 17.5mm/s, 10kHz. ac): surface of the sample and b-d): bottom of the groove.

Tables (2)

Tables Icon

Table 1. cavity parameters for the design of the regenerative amplifier referred to as Laser 1. See Fig. 1 for schematic.

Tables Icon

Table 2. Characteristics of the two amplification geometriesreferred to as Laser 1 and Laser 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f th = 2 πr 2 K η P P ( dn dT )

Metrics