Abstract

Photonic crystal slab enables us to form an ultrasmall laser cavity with a modal volume close to the diffraction limit of light. However, the thermal resistance of such nanolasers, as high as 106 K/W, has prevented continuous-wave operation at room temperature. The present paper reports on the first successful continuous-wave operation at room temperature for the smallest nanolaser reported to date, achieved through fabrication of a laser with a low threshold of 1.2 μW. Near-thresholdless lasing and spontaneous emission enhancement due to the Purcell effect are also demonstrated in a moderately low Q nanolaser, both of which are well explained by a detailed rate equation analysis.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493−494 (1960).
    [CrossRef]
  2. I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
    [CrossRef]
  3. K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988).
    [CrossRef]
  4. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
    [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  7. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  8. T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).
  9. E. Yablonovitch and T. J. Gmitter, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059−2062 (1987).
    [CrossRef] [PubMed]
  10. Y. Yamamoto, ed., "Coherence, Amplification, and Quantum effects in Semiconductor Lasers," (John Wiley & Sons, New York, 1991).
  11. H. Yokoyama and K. Ujihara, eds., "Spontaneous Emission and Laser Oscillation in Microcavities," (CRC Press, New York, 1995).
  12. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
    [CrossRef]
  13. J. M. Gérard and B. Gayral, "Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999).
    [CrossRef]
  14. M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
    [CrossRef]
  15. H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
    [CrossRef]
  16. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
    [CrossRef]
  17. T. Baba and D. Sano, "Low threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
    [CrossRef]
  18. R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
    [CrossRef]
  19. Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988−3995 (2004).
    [CrossRef]
  20. K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
    [CrossRef]
  21. K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
    [CrossRef]
  22. K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347−1354 (2003).
    [CrossRef]
  23. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
    [CrossRef]
  24. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308−6315 (2006).
    [CrossRef]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  26. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
    [CrossRef] [PubMed]
  27. M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
    [CrossRef]
  28. T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
    [CrossRef]
  29. K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
    [CrossRef]
  30. K. Nozaki and T. Baba, "Carrier and photon analyses of photonic microlasers by two-dimensional rate equations," IEEE J. Sel. Area. Commun. 23, 1411−1417 (2005).
    [CrossRef]
  31. M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999).
    [CrossRef]
  32. J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
    [CrossRef]
  33. Y. Suematsu and S. Akiba, "High-speed pulse modulation of injection lasers at non-bias condition," Trans. IECE of Japan 59, 1−8 (1976).
  34. H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001).
    [CrossRef]

2006

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308−6315 (2006).
[CrossRef]

2005

K. Nozaki and T. Baba, "Carrier and photon analyses of photonic microlasers by two-dimensional rate equations," IEEE J. Sel. Area. Commun. 23, 1411−1417 (2005).
[CrossRef]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004

M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
[CrossRef]

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988−3995 (2004).
[CrossRef]

2003

T. Baba and D. Sano, "Low threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347−1354 (2003).
[CrossRef]

2002

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

2001

H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001).
[CrossRef]

2000

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

1999

J. M. Gérard and B. Gayral, "Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999).
[CrossRef]

M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999).
[CrossRef]

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

1998

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

1997

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

1991

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

1988

K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988).
[CrossRef]

1987

E. Yablonovitch and T. J. Gmitter, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059−2062 (1987).
[CrossRef] [PubMed]

1985

T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

1976

Y. Suematsu and S. Akiba, "High-speed pulse modulation of injection lasers at non-bias condition," Trans. IECE of Japan 59, 1−8 (1976).

1970

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
[CrossRef]

1960

T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493−494 (1960).
[CrossRef]

1946

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Akiba, S.

Y. Suematsu and S. Akiba, "High-speed pulse modulation of injection lasers at non-bias condition," Trans. IECE of Japan 59, 1−8 (1976).

Arakawa, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308−6315 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Baba, T.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

K. Nozaki and T. Baba, "Carrier and photon analyses of photonic microlasers by two-dimensional rate equations," IEEE J. Sel. Area. Commun. 23, 1411−1417 (2005).
[CrossRef]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347−1354 (2003).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
[CrossRef]

T. Baba and D. Sano, "Low threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001).
[CrossRef]

M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999).
[CrossRef]

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

Boroditsky, M.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Coccioli, R.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

Dapkus, D. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

Foy, P. W.

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
[CrossRef]

Fujita, M.

M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
[CrossRef]

M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999).
[CrossRef]

Gayral, B.

Gérard, J. M.

Gmitter, T. J.

E. Yablonovitch and T. J. Gmitter, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059−2062 (1987).
[CrossRef] [PubMed]

Gogna, P.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Han, I. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

Hashimoto, J.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

Hayashi, I.

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
[CrossRef]

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hwang, J. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Ichikawa, H.

H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001).
[CrossRef]

Ide, T.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

Iga, K.

K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988).
[CrossRef]

Inoshita, K.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347−1354 (2003).
[CrossRef]

H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001).
[CrossRef]

Ishida, S.

Iwamoto, S.

Jang, D. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, K.W.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

Kinoshita, S.

K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988).
[CrossRef]

Kobayashi, T.

T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Koyama, F.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988).
[CrossRef]

Kumagai, N.

Kuramochi, E.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

Kuroki, Y.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

Loncâr, M.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Maiman, T. H.

T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493−494 (1960).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

Mizuta, E.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

Morimoto, Y.

T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Nakagawa, A.

K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nakata, Y.

Noda, S.

M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
[CrossRef]

Nomura, M.

Notomi, M.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

Nozaki, K.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

K. Nozaki and T. Baba, "Carrier and photon analyses of photonic microlasers by two-dimensional rate equations," IEEE J. Sel. Area. Commun. 23, 1411−1417 (2005).
[CrossRef]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

Panish, M. B.

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
[CrossRef]

Park, H. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Qiu, M.

Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988−3995 (2004).
[CrossRef]

Qiu, Y.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Sakai, A.

M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999).
[CrossRef]

Sano, D.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
[CrossRef]

T. Baba and D. Sano, "Low threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

Scherer, A.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

Segawa, T.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, D. S.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Suematsu, Y.

Y. Suematsu and S. Akiba, "High-speed pulse modulation of injection lasers at non-bias condition," Trans. IECE of Japan 59, 1−8 (1976).

Sueta, T.

T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Sugitatsu, A.

M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
[CrossRef]

Sumski, S.

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
[CrossRef]

Uesugi, T.

M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
[CrossRef]

Vuèkoviæ, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Vuèkoviè, J.

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Watanabe, K.

Xu, Y.

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

Yablonovitch, E.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

E. Yablonovitch and T. J. Gmitter, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059−2062 (1987).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

Yoshie, T.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988−3995 (2004).
[CrossRef]

Zheng, W. H.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

Appl. Phys. Lett.

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992).
[CrossRef]

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004).
[CrossRef]

K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001).
[CrossRef]

Electron. Lett.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999).
[CrossRef]

K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988).
[CrossRef]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991).
[CrossRef]

IEEE J. Sel. Area. Commun.

K. Nozaki and T. Baba, "Carrier and photon analyses of photonic microlasers by two-dimensional rate equations," IEEE J. Sel. Area. Commun. 23, 1411−1417 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003).
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347−1354 (2003).
[CrossRef]

T. Baba and D. Sano, "Low threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003).
[CrossRef]

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004).
[CrossRef]

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006).
[CrossRef]

Nat. Top. Meet. Rad. Sci.

T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Nature

T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493−494 (1960).
[CrossRef]

Opt. Exp.

Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988−3995 (2004).
[CrossRef]

Opt. Express

Optoelectron.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998).
[CrossRef]

Photon. Tech. Lett.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000).
[CrossRef]

Phys. Rev.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett.

E. Yablonovitch and T. J. Gmitter, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059−2062 (1987).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Trans. IECE of Japan

Y. Suematsu and S. Akiba, "High-speed pulse modulation of injection lasers at non-bias condition," Trans. IECE of Japan 59, 1−8 (1976).

Other

Y. Yamamoto, ed., "Coherence, Amplification, and Quantum effects in Semiconductor Lasers," (John Wiley & Sons, New York, 1991).

H. Yokoyama and K. Ujihara, eds., "Spontaneous Emission and Laser Oscillation in Microcavities," (CRC Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron micrograph of fabricated device. (a) Whole device. (b) Magnified view of the H0 nanolaser. Center two airholes are laterally shifted.

Fig. 2.
Fig. 2.

CW lasing characteristic of H0 nanolaser with lattice constant a = 560 nm, normalized hole diameter 2r/a = 0.57, and normalized hole shift s/a = 0.28. (a) Scanning electron micrograph of fabricated device (top view). (b) Calculated modal distribution (Hz ). (c) Mode intensity characteristic and lasing spectrum above the lasing threshold. (d) Logarithmic plots of modal intensity versus normalized pump power characteristic.

Fig. 3.
Fig. 3.

CW lasing characteristic of H1 nanolaser with a = 480 nm, 2r/a = 0.62, and normalized innermost hole diameter 2r′/a = 0.52. (a) Scanning electron micrograph of fabricated device (top view). (b) Calculated modal distribution (Hz ). (c) Mode intensity characteristics and lasing spectrum above the lasing threshold. (d) Logarithmic plots of modal intensity versus normalized pump power characteristic.

Fig. 4.
Fig. 4.

SpE decay for H0 nanolaser under on-resonant condition observed at pump power of 0.45–0.85P th. Results for a uniform PC area without nanocavity and an unpatterned wafer at 0.85P th are also shown.

Fig. 5.
Fig. 5.

Logarithmic plots of experimental and theoretical results for modal intensity (upper) and decay lifetime (lower) characteristics for pulsed measurements. (a) H0 nanolaser with Q = 20,000. Results for unpatterned wafer and PC area without cavity are also shown. (b) H1 nanolaser with Q = 1,500.

Fig. 6.
Fig. 6.

SpE intensity dependence on carrier losses. (a) Calculated modal intensity characteristics for different loss parameters whose details are shown in Table I. (b) Simplified schematic of carrier and photon behaviors in the cavity.

Fig. 7.
Fig. 7.

Calculated modal intensity characteristics, where F and cavity Q are taken as a parameter for (a) and (b), respectively. Other parameters are the same as for (A) in Fig. 5.

Tables (1)

Tables Icon

Tabel I. Calculation parameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dN dt = P pump ħ ω pump GS n 2 E 2 V m [ FC n 2 E 2 V m + ( 1 C ) ] B N 2 + C A N 3 + D 2 N
dS dt = QW GS n 2 E 2 dxdydz + QW FCB N 2 n 2 E 2 dxdydz S τ ph
eN ν s = eD N ( at semiconductor / air boundaries )

Metrics