Abstract

We present a theoretical and experimental comparison of spontaneous parametric down-conversion in periodically poled waveguides and bulk KTP crystals. We measured a waveguide pair generation rate of 2.9∙106 pairs/s per mW of pump in a 1-nm band: more than 50 times higher than the bulk crystal generation rate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
    [CrossRef] [PubMed]
  2. P. G. Kwiat, E. Waks, A. G. White1, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773 (1999).
    [CrossRef]
  3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements," Phys. Rev. Lett. 88, 257902 (2002).
    [CrossRef] [PubMed]
  4. S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
    [CrossRef]
  5. K. Sanaka, K. Kawahara, and T. Kuga, "New High-Efficiency Source of Photon Pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
    [CrossRef] [PubMed]
  6. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004).
    [CrossRef] [PubMed]
  7. D. A. Kleinman, "Theory of Optical Parametric Noise," Phys. Rev. 174, 1027 (1968).
    [CrossRef]
  8. K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
    [CrossRef]
  9. P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
    [CrossRef]
  10. D. F. Walls and G. J. Milburn, "Quantum Optics," (Springer-Verlag, Berlin, 1995).
  11. H. Vanherzeele and J. D. Bierlein, "Magnitude of the nonlinear-optical coefficients of KTiOPO4," Opt. Lett. 17982 (1992).
    [CrossRef] [PubMed]
  12. J. D. Bierlein and H. Vanherzeele, "Potassium titanyl phospate: properties and new applications," J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  13. E. C. Cheung, K. Koch, G. T. Moore, J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19168 (1994).
    [CrossRef] [PubMed]
  14. Z. Y. Ou and Y. J. Lu, "Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons," Phys. Rev. Lett. 83, 2556 (1999).
    [CrossRef]
  15. T. E. Murphy, Ph.D. thesis, MIT (2001). See also the pakage for numerically solving the eigenmode problem at http://www.photonics.umd.edu/software
  16. M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, "Characterization of optical waveguides in KTiOP04 by second harmonic spectroscopy," J. Appl. Phys. 9, 4999 (1994).
    [CrossRef]
  17. T. Kim, M. Fiorentino, P. V. Gorelik and F. N. C. Wong, "Low-cost nanosecond electronic coincidence detector," physics/0501141 (2005).
  18. A. B. U’ren, personal communication.
  19. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  20. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
    [CrossRef] [PubMed]

2004 (2)

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

2002 (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

K. Sanaka, K. Kawahara, and T. Kuga, "New High-Efficiency Source of Photon Pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

1999 (2)

P. G. Kwiat, E. Waks, A. G. White1, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Z. Y. Ou and Y. J. Lu, "Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons," Phys. Rev. Lett. 83, 2556 (1999).
[CrossRef]

1995 (3)

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

1994 (3)

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, "Characterization of optical waveguides in KTiOP04 by second harmonic spectroscopy," J. Appl. Phys. 9, 4999 (1994).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
[CrossRef] [PubMed]

E. C. Cheung, K. Koch, G. T. Moore, J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19168 (1994).
[CrossRef] [PubMed]

1992 (1)

1989 (1)

1968 (1)

D. A. Kleinman, "Theory of Optical Parametric Noise," Phys. Rev. 174, 1027 (1968).
[CrossRef]

Aschieri, P.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

Baldi, P.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

Bierlein, J. D.

Bindloss, W.

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, "Characterization of optical waveguides in KTiOP04 by second harmonic spectroscopy," J. Appl. Phys. 9, 4999 (1994).
[CrossRef]

Chakmakjian, S. H.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

Cheung, E. C.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

E. C. Cheung, K. Koch, G. T. Moore, J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19168 (1994).
[CrossRef] [PubMed]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

Delacourt, D.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

Gisin, N.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

Kawahara, K.

K. Sanaka, K. Kawahara, and T. Kuga, "New High-Efficiency Source of Photon Pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

Kleinman, D. A.

D. A. Kleinman, "Theory of Optical Parametric Noise," Phys. Rev. 174, 1027 (1968).
[CrossRef]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
[CrossRef] [PubMed]

Koch, K.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

E. C. Cheung, K. Koch, G. T. Moore, J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19168 (1994).
[CrossRef] [PubMed]

Kuga, T.

K. Sanaka, K. Kawahara, and T. Kuga, "New High-Efficiency Source of Photon Pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White1, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Liu, J. M.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

E. C. Cheung, K. Koch, G. T. Moore, J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19168 (1994).
[CrossRef] [PubMed]

Lu, Y. J.

Z. Y. Ou and Y. J. Lu, "Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons," Phys. Rev. Lett. 83, 2556 (1999).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Moore, G. T.

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

E. C. Cheung, K. Koch, G. T. Moore, J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19168 (1994).
[CrossRef] [PubMed]

Nouh, S.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou and Y. J. Lu, "Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons," Phys. Rev. Lett. 83, 2556 (1999).
[CrossRef]

Papuchon, M.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

Roelofs, M. G.

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, "Characterization of optical waveguides in KTiOP04 by second harmonic spectroscopy," J. Appl. Phys. 9, 4999 (1994).
[CrossRef]

Rubin, M. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
[CrossRef] [PubMed]

Sanaka, K.

K. Sanaka, K. Kawahara, and T. Kuga, "New High-Efficiency Source of Photon Pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

Sergienko, A. V.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
[CrossRef] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Shih, Y. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
[CrossRef] [PubMed]

Suna, A.

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, "Characterization of optical waveguides in KTiOP04 by second harmonic spectroscopy," J. Appl. Phys. 9, 4999 (1994).
[CrossRef]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

Tittel, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

Vanherzeele, H.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White1, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White1, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Zbinden, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin, " Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 28, (2001).
[CrossRef]

IEEE J. of Quantum Electron. (2)

K. Koch, E. C. Cheung, G. T. Moore, S. H. Chakmakjian, and J. M. Liu, "Hot Spots in Parametric Fluorescence with a Pump Beam of Finite Cross Section," IEEE J. of Quantum Electron. 31769 (1995).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, "Modeling and Experimental Observation of Parametric Fluorescence in Periodically Poled Lithium Niobate Waveguides," IEEE J. of Quantum Electron. 31997 (1995).
[CrossRef]

J. Appl. Phys. (1)

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, "Characterization of optical waveguides in KTiOP04 by second harmonic spectroscopy," J. Appl. Phys. 9, 4999 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev Lett. (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Phys. Rev. (1)

D. A. Kleinman, "Theory of Optical Parametric Noise," Phys. Rev. 174, 1027 (1968).
[CrossRef]

Phys. Rev. A (3)

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter," Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, "Theory of two-photon entanglement in type-II optical parametric down-conversion," Phys. Rev. A 505122 (1994).
[CrossRef] [PubMed]

P. G. Kwiat, E. Waks, A. G. White1, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of Nondeterministic Quantum Logic Operations Using Linear Optical Elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

K. Sanaka, K. Kawahara, and T. Kuga, "New High-Efficiency Source of Photon Pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004).
[CrossRef] [PubMed]

Z. Y. Ou and Y. J. Lu, "Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons," Phys. Rev. Lett. 83, 2556 (1999).
[CrossRef]

Other (4)

T. E. Murphy, Ph.D. thesis, MIT (2001). See also the pakage for numerically solving the eigenmode problem at http://www.photonics.umd.edu/software

D. F. Walls and G. J. Milburn, "Quantum Optics," (Springer-Verlag, Berlin, 1995).

T. Kim, M. Fiorentino, P. V. Gorelik and F. N. C. Wong, "Low-cost nanosecond electronic coincidence detector," physics/0501141 (2005).

A. B. U’ren, personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Signal power densities for waveguides (left plot) and bulk (right plot). The densities are calculated for a 1 mW pump laser. Notice the different vertical scales for the two plots.

Fig. 2.
Fig. 2.

Intensity plot of the eigennmodes for the signal, idler, and pump. The blue lines indicate the edge of the crystal (top) and the edge of the diffusion profile zone (center). Only half of the structure has to be simulated given the problem symmetry. The scale is in dB and is normalized to the peak intensity. A finite difference scalar approximation was used to solve the eigenmode problem.

Fig. 3.
Fig. 3.

Experimental setup for waveguide test. PPKTP, periodically poled crystal with waveguides; DM, dichroic mirror reflects 405 nm transmits 810 nm; IF, interference filter at 810 nm 1 nm FWHM; PBS, polarization beam splitter; SPCMs; single photon counting modules.

Fig. 4.
Fig. 4.

Measured spectrum for the signal (horizontally polarized) down-converted beam (blue continuous curve) with a sinc2 fit to the data (red dotted curve), background has been subtracted. To obtain the spectrum 20 mW of pump were used.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d 𝓟 s ( B ) = h ¯ d 2 ω s 3 ω i 2 π c 4 ε 0 n p 2 ω p 𝓟 p f ( λ s ) d ω s = ( 2 π ) 4 2 h ¯ c d 2 λ p ε 0 n p 2 λ s 5 λ i 2 𝓟 p f ( λ s ) d λ s .
f ( λ s ) = 1 π 0 d ( r 2 ) sinc 2 [ r 2 + 2 γ ( ω ¯ ω s ) ] .
γ = ω s Δ k | ω ¯ ω i Δ k | ω ¯
E s , i ( r , t ) = i k ( c k u k ( r ) e i ω ( k ) t + c . c . )
( 2 + ( ω ( k ) ) 2 n 2 c 2 ) u k = 0
u k = 0
V u k * u k = 1
u k ( r ) = 1 L U ( k ) ( x , y ) e i β ( k ) z ,
𝓔 ̂ s , i = 1 2 [ E ̂ s , i ( r , t ) + E ̂ s , i ( r , t ) ]
= i 2 k [ ( 2 h ¯ ω s , i ( k ) n s , i 2 ε 0 ) 1 2 1 L U s , i ( k ) ( x , y ) e i ( β s , i ( k ) z ω s , i ( k ) t ) a ̂ s , i ( i ) + h . c . ] ,
𝓔 p ( r , t ) = 1 2 [ E p ( r , t ) + E p * ( r , t ) ] =
= 1 2 [ 2 𝓟 p c n p ε 0 U p ( x , y ) e i ( β p z ω p t ) + c . c . ] ,
H ̂ I = ε 0 2 d C { E p E ̂ s E ̂ i + H . c . } = d 2 h ¯ ε 0 c n s 2 n i 2 n p 𝓟 p L j , k ω s ( i ) ω i ( j )
C dxdydz [ U p ( U i ( j ) ) * ( U s ( k ) ) * e i ( β p β s ( k ) β i ( j ) ) z e i ( ω p ω s ( k ) ω i ( j ) ) t a ̂ s ( i ) a ̂ i ( j ) + h . c . ] .
f H ̂ I i = d h ¯ 2 𝓟 p ω s ω i ε 0 c n s 2 n i 2 n p 1 L C dxdydz U p ( U i ) * ( U s ) * e i Δ kz
= d h ¯ 2 𝓟 p ω s ω i ε 0 c n s 2 n i 2 n p L A I sinc ( Δ k 2 ) .
d 𝓝 = 1 2 π n s h ¯ c dE
ρ = L 2 ( 2 π ) 2 n s n i h ¯ c 2 d ω s .
𝓦 = 2 π h ¯ f H ̂ I i 2 ρ = d 2 𝓟 p ω s ω i π ε 0 c 3 n s n p n i 2 A I sinc 2 ( Δ k 2 ) d ω s
d 𝓟 s ( W ) = h ¯ d 2 ω s 2 ω i 2 𝓟 p π c 3 ε 0 n s n i n p A I sinc 2 ( Δ k 2 ) d ω s = 16 π 3 h ¯ d 2 2 c 𝓟 p ε 0 n s n i n p λ s 4 λ i A I sinc 2 ( Δ k 2 ) d λ s
Δ k β p β s β i 2 π Λ = k p k s k i 2 π Λ + Δ k WG ,

Metrics