Abstract

We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively. Adaptive correction of ocular aberrations is achieved by changing the amplitude and the frequency of the applied control voltage. The convex-shaped glass substrates provide the required initial focusing power of the lens. A loop antenna mounded on the rim of the lens delivers an amplitude-modulated radio-frequency control signal to the integrated rectifier circuit that drives the liquid-crystal modal corrector. In vitro measurements of a 5-mm clear aperture prototype with an initial focusing power of +12.5 diopter, remotely driven by a radio-frequency control unit at ~6 MHz, were carried out using a Shack-Hartmann wave-front sensor. The lens based on a 40-μm thick liquid-crystal layer allows for an adjustable defocus of 4 waves, i. e. an accommodation of ~2.51 dioptres at a wavelength of 534 nm, and correction of spherical aberration coefficient ranging from -0.8 to 0.67 waves. Frequency-switching technique was employed to increase the response speed and eliminate transient overshoots in aberration coefficients. The full-scale settling time of the adaptive modal corrector was measured to be ~4 s.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.  Lesiewska-Junk and J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000).
    [CrossRef] [PubMed]
  2. T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
    [PubMed]
  3. H. B.  Dick, "Accommodative intraocular lenses: current status," Curr. Opin. Ophthalmol. 16, 8-26 (2005).
    [CrossRef] [PubMed]
  4. A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003).
    [CrossRef]
  5. S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005).
    [CrossRef]
  6. S.  Masket, "Accommodating IOLs: emerging concepts and design," Cataract and Refract. Surg. Today, 32-36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf.
  7. R.  Bellucci and P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993).
    [PubMed]
  8. P. J.  Gray and M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992).
    [CrossRef] [PubMed]
  9. T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).
  10. T.  Terwee, "Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag],"presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.
  11. A. N.  Simonov, G.  Vdovin, and M. C.  Rombach, "Cubic optical elements for an accommodative intraocular lens," Opt. Express 14, 7757-7775 (2006).
    [CrossRef] [PubMed]
  12. K. N.  Ogle, "On the resolving power of the human eye," J. Opt. Soc. Am. 41, 517-520 (1951).
    [CrossRef] [PubMed]
  13. J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
    [CrossRef]
  14. G.-Y.  Yoon and D. R.  Williams, "Visual performance after correcting the monochromatic and chromatic aberrations of the eye," J. Opt. Soc. Am. A 19, 266-275 (2002).
    [CrossRef]
  15. G.  Vdovin, M.  Loktev and A.  Naumov, "On the possibility of intraocular adaptive optics," Opt. Express 11, 810-817 (2003).
    [CrossRef] [PubMed]
  16. A. F.  Naumov, M. Yu.  Loktev, I. R.  Guralnik, and G.  Vdovin, "Liquid-crystal adaptive lenses with modal control," Opt. Lett. 23, 992-994 (1998).
    [CrossRef]
  17. A. F.  Naumov, G. D.  Love, M. Yu.  Loktev, and F. L.  Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express 4, 344-352 (1999).
    [CrossRef] [PubMed]
  18. M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000).
    [CrossRef]
  19. T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
    [CrossRef]
  20. IEEE standards for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1-1991.
  21. P.  Röschmann, "Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging," Med. Phys. 14, 922-931 (1987).
    [CrossRef] [PubMed]
  22. M. J.  Stephen and J. P.  Straley, "Physics of liquid crystals," Rev. Mod. Phys. 46, 617-704 (1974).
    [CrossRef]
  23. http://www.okotech.com/sensors/.
  24. R.  Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  25. H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
    [CrossRef]
  26. M. Loktev, "Modal wavefront correctors based on nematic liquid crystals," Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands, 2005).
  27. O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
    [PubMed]
  28. O.  Pomerantzeff, P.  Dufault, and R.  Goldstein, "Wide-angle optical model of the eye," in Advances in Diagnostic Visual Optics, G. M. Breinin and I. M. Siegel, eds., (Springer-Verlag, Berlin, 1983).
  29. D.  Malacara and M.  Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).
  30. J. A.  Mordi and K. J.  Ciuffreda, "Dynamic aspects of accommodation: age and presbyopia," Vision Res. 44, 591-601 (2004).
    [CrossRef]
  31. A. K.  Kirby and G. D.  Love, "Fast, large and controllable phase modulation using dual frequency liquid crystals," Opt. Express 12, 1470-1475 (2004).
    [CrossRef] [PubMed]
  32. B.  Simon-Hettich and W.  Becker, "Toxicological investigations of liquid crystals," presented at 28th Freiburg Workshop on Liquid Crystals; Freiburg, Germany, 1999.
  33. W.  Becker, B.  Simon-Hettich, and P.  Hnicke, "Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds," Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).
  34. J.  Bruines, "Process outlook for analog and rf applications," Microelectr. Engineer. 54, 35-48 (2000).
    [CrossRef]
  35. S. P.  Kotova, M. Yu.  Kvashnin, M. A.  Rakhmatulin, O. A. Zayakin, I. G.  Guralnik, N. A.  Klimov, P.  Clark, G. D.  Love, A. F.  Naumov, C. D.  Saunter, M. Yu.  Loktev, G. V.  Vdovin, and L. V.  Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002).
    [PubMed]
  36. G. V.  Vdovin, I. R.  Guralnik, M. Y.  Loktev, A. F.  Naumov, and S. V.  Sheenkov, "Dynamic method for control of wavefront shape of a light beam and device for its realization," Russian patent 2214617, December 1999 (in Russian).
  37. http://www.biosemi.com/publications.htm>
  38. G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
    [CrossRef]

2006 (2)

A. N.  Simonov, G.  Vdovin, and M. C.  Rombach, "Cubic optical elements for an accommodative intraocular lens," Opt. Express 14, 7757-7775 (2006).
[CrossRef] [PubMed]

G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
[CrossRef]

2005 (2)

S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005).
[CrossRef]

H. B.  Dick, "Accommodative intraocular lenses: current status," Curr. Opin. Ophthalmol. 16, 8-26 (2005).
[CrossRef] [PubMed]

2004 (3)

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

J. A.  Mordi and K. J.  Ciuffreda, "Dynamic aspects of accommodation: age and presbyopia," Vision Res. 44, 591-601 (2004).
[CrossRef]

A. K.  Kirby and G. D.  Love, "Fast, large and controllable phase modulation using dual frequency liquid crystals," Opt. Express 12, 1470-1475 (2004).
[CrossRef] [PubMed]

2003 (2)

A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003).
[CrossRef]

G.  Vdovin, M.  Loktev and A.  Naumov, "On the possibility of intraocular adaptive optics," Opt. Express 11, 810-817 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (4)

J.  Bruines, "Process outlook for analog and rf applications," Microelectr. Engineer. 54, 35-48 (2000).
[CrossRef]

H.  Lesiewska-Junk and J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000).
[CrossRef] [PubMed]

M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000).
[CrossRef]

T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

1994 (1)

J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

1993 (1)

R.  Bellucci and P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993).
[PubMed]

1992 (1)

P. J.  Gray and M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992).
[CrossRef] [PubMed]

1987 (1)

P.  Röschmann, "Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging," Med. Phys. 14, 922-931 (1987).
[CrossRef] [PubMed]

1976 (1)

1974 (1)

M. J.  Stephen and J. P.  Straley, "Physics of liquid crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

1971 (1)

O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
[PubMed]

1951 (1)

Amano, Sh.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Anders, N.

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Applegate, R. A.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Barnett, J. K.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Bellucci, R.

R.  Bellucci and P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993).
[PubMed]

Belopukhov, V. N.

M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000).
[CrossRef]

Bille, J. F.

J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

Brandt, S. A.

G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
[CrossRef]

Bruines, J.

J.  Bruines, "Process outlook for analog and rf applications," Microelectr. Engineer. 54, 35-48 (2000).
[CrossRef]

Cheng, H.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Ciuffreda, K. J.

J. A.  Mordi and K. J.  Ciuffreda, "Dynamic aspects of accommodation: age and presbyopia," Vision Res. 44, 591-601 (2004).
[CrossRef]

Clark, P.

Dick, H. B.

H. B.  Dick, "Accommodative intraocular lenses: current status," Curr. Opin. Ophthalmol. 16, 8-26 (2005).
[CrossRef] [PubMed]

Fish, H.

O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
[PubMed]

Fujikado, T.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Fukuyama, M.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Giardini, P.

R.  Bellucci and P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993).
[PubMed]

Goelz, S.

J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

Govignon, J.

O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
[PubMed]

Gray, P. J.

P. J.  Gray and M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992).
[CrossRef] [PubMed]

Grimm, B.

J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

Guralnik, I. G.

Guralnik, I. R.

Hartmann, C.

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Hirohara, Y.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Kaluzny, J.

H.  Lesiewska-Junk and J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000).
[CrossRef] [PubMed]

Kasthurirangan, S.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Kelly, T. L.

T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

Kirby, A. K.

Klimov, N. A.

Kotova, S. P.

Kvashnin, M. Yu.

Lesiewska-Junk, H.

H.  Lesiewska-Junk and J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000).
[CrossRef] [PubMed]

Liang, J.

J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

Liekfeld, A.

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Loktev, M.

Loktev, M. Yu.

Love, G. D.

Lyall, M. G.

P. J.  Gray and M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992).
[CrossRef] [PubMed]

Maeda, N.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Magnante, P.

A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003).
[CrossRef]

Marsack, J. D.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

McLeod, S. D.

S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005).
[CrossRef]

Mihashi, T.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Miller, D.

A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003).
[CrossRef]

Mimura, T.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Mordi, J. A.

J. A.  Mordi and K. J.  Ciuffreda, "Dynamic aspects of accommodation: age and presbyopia," Vision Res. 44, 591-601 (2004).
[CrossRef]

Naumov, A.

Naumov, A. F.

Nietzel, A.

G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
[CrossRef]

Noll, R.

Ogle, K. N.

Oshika, T.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Pascual-Leone, A.

G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
[CrossRef]

Pham, D. T.

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Pomerantzeff, O.

O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
[PubMed]

Portney, V.

S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005).
[CrossRef]

Rakhmatulin, M. A.

S. P.  Kotova, M. Yu.  Kvashnin, M. A.  Rakhmatulin, O. A. Zayakin, I. G.  Guralnik, N. A.  Klimov, P.  Clark, G. D.  Love, A. F.  Naumov, C. D.  Saunter, M. Yu.  Loktev, G. V.  Vdovin, and L. V.  Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002).
[PubMed]

T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

Rana, A.

A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003).
[CrossRef]

Rombach, M. C.

Roorda, A.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Röschmann, P.

P.  Röschmann, "Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging," Med. Phys. 14, 922-931 (1987).
[CrossRef] [PubMed]

Saunter, C. D.

Schepens, C. L.

O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
[PubMed]

Simonov, A. N.

Stephen, M. J.

M. J.  Stephen and J. P.  Straley, "Physics of liquid crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Straley, J. P.

M. J.  Stephen and J. P.  Straley, "Physics of liquid crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Tanaka, S.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Thut, G.

G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
[CrossRef]

Ting, A.

S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005).
[CrossRef]

Toporkova, L. V.

Vdovin, G.

Vdovin, G. V.

S. P.  Kotova, M. Yu.  Kvashnin, M. A.  Rakhmatulin, O. A. Zayakin, I. G.  Guralnik, N. A.  Klimov, P.  Clark, G. D.  Love, A. F.  Naumov, C. D.  Saunter, M. Yu.  Loktev, G. V.  Vdovin, and L. V.  Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002).
[PubMed]

M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000).
[CrossRef]

Vilupuru, A. S.

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Vladimirov, F. L.

M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000).
[CrossRef]

A. F.  Naumov, G. D.  Love, M. Yu.  Loktev, and F. L.  Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express 4, 344-352 (1999).
[CrossRef] [PubMed]

Walkow, T.

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Williams, D. R.

Wollensak, J. A.

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Yoon, G.-Y.

Yoshitomi, F.

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

Zayakin, O. A.

S. P.  Kotova, M. Yu.  Kvashnin, M. A.  Rakhmatulin, O. A. Zayakin, I. G.  Guralnik, N. A.  Klimov, P.  Clark, G. D.  Love, A. F.  Naumov, C. D.  Saunter, M. Yu.  Loktev, G. V.  Vdovin, and L. V.  Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002).
[PubMed]

T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

Ann Ophthalmol. (1)

O.  Pomerantzeff, H.  Fish, J.  Govignon, and C. L.  Schepens, "Wide angle optical model of the human eye," Ann Ophthalmol. 3, 815-819 (1971).
[PubMed]

Br. J. Ophthalmol. (2)

S. D.  McLeod, V.  Portney, and A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005).
[CrossRef]

P. J.  Gray and M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (1)

H. B.  Dick, "Accommodative intraocular lenses: current status," Curr. Opin. Ophthalmol. 16, 8-26 (2005).
[CrossRef] [PubMed]

Engineer. (1)

J.  Bruines, "Process outlook for analog and rf applications," Microelectr. Engineer. 54, 35-48 (2000).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, and T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Invest. Ophthalmol. Vis. Sci. 43, 2882-2886 (2002).
[PubMed]

J. Cataract. Refract. Surg. (1)

A.  Rana, D.  Miller, and P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003).
[CrossRef]

J. Neuroscience (1)

G.  Thut, A.  Nietzel, S. A.  Brandt, and A.  Pascual-Leone, "Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection," J. Neuroscience 26, 9494-9502 (2006).
[CrossRef]

J. Opt. Soc. Am. (3)

R.  Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
[CrossRef]

K. N.  Ogle, "On the resolving power of the human eye," J. Opt. Soc. Am. 41, 517-520 (1951).
[CrossRef] [PubMed]

J.  Liang, B.  Grimm, S.  Goelz, and J. F.  Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. 11, 1949-1957 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vision (1)

H.  Cheng, J. K.  Barnett, A. S.  Vilupuru, J. D.  Marsack, S.  Kasthurirangan, R. A.  Applegate, and A.  Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

J. Cataract. Refract. Surg. (2)

R.  Bellucci and P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993).
[PubMed]

H.  Lesiewska-Junk and J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000).
[CrossRef] [PubMed]

Med. Phys. (1)

P.  Röschmann, "Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging," Med. Phys. 14, 922-931 (1987).
[CrossRef] [PubMed]

Ophthalm. (1)

T.  Walkow, A.  Liekfeld, N.  Anders, D. T.  Pham, C.  Hartmann, and J. A.  Wollensak "A prospective evaluation of a diffractive versus refractive designed multifocal intraocular lenses. Visual and refractive comparison," Ophthalm. 104, 1380-1386 (1997).

Opt. Commun. (1)

T. L.  Kelly, A. F.  Naumov, M. Yu.  Loktev, M. A.  Rakhmatulin, and O. A.  Zayakin, "Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses," Opt. Commun. 181, 295-301 (2000).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Rev. Mod. Phys. (1)

M. J.  Stephen and J. P.  Straley, "Physics of liquid crystals," Rev. Mod. Phys. 46, 617-704 (1974).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Yu.  Loktev, V. N.  Belopukhov, F. L.  Vladimirov, G. V.  Vdovin, G. D.  Love, and A. F.  Naumov, "Wave front control systems based on modal liquid crystal lenses," Rev. Sci. Instrum. 71, 3290-3297 (2000).
[CrossRef]

Vision Res. (1)

J. A.  Mordi and K. J.  Ciuffreda, "Dynamic aspects of accommodation: age and presbyopia," Vision Res. 44, 591-601 (2004).
[CrossRef]

Other (11)

B.  Simon-Hettich and W.  Becker, "Toxicological investigations of liquid crystals," presented at 28th Freiburg Workshop on Liquid Crystals; Freiburg, Germany, 1999.

W.  Becker, B.  Simon-Hettich, and P.  Hnicke, "Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds," Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology 64271 Darmstadt, September 25 (2001).

G. V.  Vdovin, I. R.  Guralnik, M. Y.  Loktev, A. F.  Naumov, and S. V.  Sheenkov, "Dynamic method for control of wavefront shape of a light beam and device for its realization," Russian patent 2214617, December 1999 (in Russian).

http://www.biosemi.com/publications.htm>

http://www.okotech.com/sensors/.

IEEE standards for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1-1991.

M. Loktev, "Modal wavefront correctors based on nematic liquid crystals," Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands, 2005).

O.  Pomerantzeff, P.  Dufault, and R.  Goldstein, "Wide-angle optical model of the eye," in Advances in Diagnostic Visual Optics, G. M. Breinin and I. M. Siegel, eds., (Springer-Verlag, Berlin, 1983).

D.  Malacara and M.  Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).

T.  Terwee, "Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag],"presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.

S.  Masket, "Accommodating IOLs: emerging concepts and design," Cataract and Refract. Surg. Today, 32-36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The wirelessly-controlled LC lens: (a) cross section of the LC modal corrector, (b) photograph. 1, glass (BK7) substrates; 2, ITO low-ohmic layer; 3, liquid crystal; 4, contact; 5, high-ohmic layer; R, rectifying diode; A, antenna.

Fig. 2.
Fig. 2.

Wireless RF control link. FG, function generator; RFO, radio-frequency oscillator; M, modulator; A, amplifier; TA, transmitting antenna; RA, receiving antenna, D, demodulator.

Fig. 3.
Fig. 3.

Transfer characteristics of the RF link at different driving voltages U LC of the LC lens.

Fig. 4.
Fig. 4.

Experimental arrangement for measuring aberrations produced by the LC lens. Inset shows the wireless link. 1, glass walls of the water cell; 2, distilled water; L1, L2, lenses; TA, transmitting antenna; RA, receiving antenna.

Fig. 5.
Fig. 5.

Dependence of the LC lens aberrations (defocus a 4, spherical aberration a 11) on the modulation frequency F at fixed voltages U LC across the LC modal corrector: (a) 2.12 V (rms), (b) 2.83 V (rms), (c) 3.53 V (rms), (d) 4.24 V (rms).

Fig. 6.
Fig. 6.

Dependences of the optimal modulation voltage U m (and corresponding voltage U LC applied to the LC lens) and the modulation frequency F versus focusing power variation ΔΦ. Interferograms of the LC lens were simulated using the measured aberrations.

Fig. 7.
Fig. 7.

Transient dynamics of the LC lens aberrations (defocus a 4, spherical aberration a 11) at: (a) periodic turning on (20 s) and off (20 s) of a control voltage U LC=2.83 V (rms), F changes stepwise from 4 kHz to 14 kHz by 2 kHz every 40 s; (b) two-level stepwise frequency and amplitude control. The upper diagrams represent U LC sequences.

Fig. 8.
Fig. 8.

LC lens phase cross sections and the corresponding interferograms obtained in a Mach-Zehnder interferometer at: (a) a fixed frequency F=10.5 kHz and different U LC, (b) a fixed voltage U LC=2.12 V (rms) and various F.

Fig. 9.
Fig. 9.

Monochromatic MTFs of the model eye with the LC modal lens: (a) based on the measured 11 aberration coefficients of the lens prototype accommodated at +2.4 D, (b) optimized shape of the LC lens glass substrates.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z = S ( x , y ) = r 2 R { 1 + 1 ( 1 + k ) × ( r R ) 2 } ,

Metrics