Abstract

We present data analysis for ocular aberrations of 60 normal eyes measured with a Hartmann-Shack (HS) wavefront sensor (WFS). Aberration measurements were made on-axis and at 5 degree field angles in the nasal, inferior, temporal and superior semi-meridians. Particular attention is given to aberration distributions and possible strategies for aberration correction are discussed. A versatile HS WFS was designed and constructed with features of simultaneous pupil centre determination, off-axis capability, real-time data displays, and efficient lenslet sampling orientation. The subject alignment is achieved by the use of a parallel channel that is recombined with the sensing channel to simultaneously image the eye and the HS spots onto a single CCD. The pupil centre is determined using this image of the eye (iris edge), rather than the HS spots. The optical design includes a square lenslet array positioned with its diagonals aligned with the most typical principal astigmatic meridians of the eye. This favourable orientation helps to enlarge the dynamic range of the WFS. The telecentric re-imaging of the HS spots increases the robustness of the system to defocus in the event of CCD misalignment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. .J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  2. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002).
    [CrossRef]
  3. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  4. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
    [CrossRef]
  5. A. Guirao and P. Artal, "Off-axis monochromatic aberrations estimated from double pass measurements in the human eye," Vision Res. 39, 207-217 (1999).
    [CrossRef] [PubMed]
  6. L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
    [CrossRef]
  7. R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998).
    [CrossRef]
  8. D. A. Atchison and D. H. Scott, "Monochromatic aberrations of human eyes in the horizontal visual field," J. Opt. Soc. Am. A 19, 2180-2184 (2002).
    [CrossRef]
  9. D. A. Atchison, D. H. Scott, and W. N. Charman, "Hartmann-Shack technique and refraction across the horizontal visual field," J. Opt. Soc. Am. A 20, 965-973 (2003).
    [CrossRef]
  10. D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 335-359 (2004).
    [CrossRef]
  11. M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).
  12. A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," accepted for publication in JOSA A.
  13. J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
    [CrossRef]
  14. L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and its Applications, OSA Technical Digest, paper SuC1 (2000).
  15. C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).
  16. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  17. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003)
    [CrossRef]
  18. D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).
  19. L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007).
    [CrossRef]
  20. R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
    [CrossRef]
  21. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
    [CrossRef] [PubMed]
  22. S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
    [CrossRef] [PubMed]
  23. J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
    [CrossRef]
  24. P. Artal and A. Guirao, "Contributions of the cornea and the lens to the aberrations of the human eye," Opt. Lett. 23, 1713-1715 (1998).
    [CrossRef]
  25. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
    [CrossRef]
  26. P. Artal, E. Berrio, A Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations," J. Opt. Soc. Am. A 19, 137-143 (2002).
    [CrossRef]
  27. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 620-628 (2002).
    [CrossRef]
  28. J. A. M. Jennings, and W. N. Charman, "Off-axis image quality in the human eye," Vision Res. 21, 445-455 (1981).
    [CrossRef] [PubMed]
  29. A. Bradley, and L. N. Thibos, "Modeling off-axis vision - I: the optical effects of decentering visual targets or the eye's entrance pupil," in Vision Models for Target Detection and Resolution, E. Peli, ed., (World Scientific Press, 1995), pp. 313-337.
  30. S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003).
    [CrossRef]
  31. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, "Multiconjugate adaptive optics applied to an anatomically accurate human eye model," Opt. Express 14, 8019-8030 (2006).
    [CrossRef] [PubMed]

2007

2006

2005

D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
[CrossRef]

M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).

J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).

E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
[CrossRef]

2004

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 335-359 (2004).
[CrossRef]

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

2003

2002

2001

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

1999

A. Guirao and P. Artal, "Off-axis monochromatic aberrations estimated from double pass measurements in the human eye," Vision Res. 39, 207-217 (1999).
[CrossRef] [PubMed]

R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
[CrossRef]

1998

1994

1981

J. A. M. Jennings, and W. N. Charman, "Off-axis image quality in the human eye," Vision Res. 21, 445-455 (1981).
[CrossRef] [PubMed]

Alió, J. L.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
[CrossRef]

Amano, S.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Amano, Y.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Artal, P.

Ashman, R.

Atchison, D. A.

Baer, C. D.

D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).

Bará, S.

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Bedggood, P. A.

Berrio, E.

P. Artal, E. Berrio, A Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

Bille, J. F.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002).
[CrossRef]

Calver, R.

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

Calver, R. I.

Carroll, J.

J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Chang, C. J.

C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).

Charman, W. N.

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Cheng, X.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002).
[CrossRef]

Cox, I. G.

Cox, M. J.

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
[CrossRef]

Dainty, J. C.

M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).

Díaz-Santana, L.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003)
[CrossRef]

Dorronsoro, C.

Drexler, W.

Elliott, D. B.

Fernández, E.

Garner, L. F.

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

Goelz, S.

Goncharov, A. V.

M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).

Gray, D. C.

J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Grimm, B.

Guirao, A

Guirao, A.

Gustafsson, J.

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
[CrossRef]

Hermann, B.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002).
[CrossRef]

Jennings, J. A. M.

J. A. M. Jennings, and W. N. Charman, "Off-axis image quality in the human eye," Vision Res. 21, 445-455 (1981).
[CrossRef] [PubMed]

Juo, S. H.

C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Lara-Saucedo, D.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003)
[CrossRef]

Liang, C. L.

C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).

Liang, J.

Llorente, L.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003)
[CrossRef]

Lundström, L.

L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007).
[CrossRef]

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
[CrossRef]

Marcos, S.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003)
[CrossRef]

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Metha, A. B.

Miyai, T.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Miyata, K.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Montés-Micó, R.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
[CrossRef]

Moreno, E.

Navarro, R.

Neal, D. R.

D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).

Negri, H. P.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
[CrossRef]

Oshika, T.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Piers, P.

Porter, J.

Prieto, P.

Roorda, A.

J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Samejima, T.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Schimchak, P.

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
[CrossRef]

Scott, D. H.

Sheehan, M. T.

M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).

Smith, G.

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, "Multiconjugate adaptive optics applied to an anatomically accurate human eye model," Opt. Express 14, 8019-8030 (2006).
[CrossRef] [PubMed]

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

Svensson, I.

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
[CrossRef]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002).
[CrossRef]

Topa, D. M.

D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).

Unsbo, P.

L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007).
[CrossRef]

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
[CrossRef]

Unterhuber, A.

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

Williams, D. R.

J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 620-628 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Yamagami, S.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004).
[CrossRef] [PubMed]

J Cataract Refractive Surg.

C. L. Liang, S. H. Juo, C. J. Chang, "Comparison of higher-order wavefront aberrations with 3 aberrometers," J Cataract Refractive Surg. 11, 2153-2156 (2005).

J. Opt. Soc. Am. A

L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007).
[CrossRef]

R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999).
[CrossRef]

.J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998).
[CrossRef]

D. A. Atchison and D. H. Scott, "Monochromatic aberrations of human eyes in the horizontal visual field," J. Opt. Soc. Am. A 19, 2180-2184 (2002).
[CrossRef]

D. A. Atchison, D. H. Scott, and W. N. Charman, "Hartmann-Shack technique and refraction across the horizontal visual field," J. Opt. Soc. Am. A 20, 965-973 (2003).
[CrossRef]

D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 335-359 (2004).
[CrossRef]

S. Bará and R. Navarro, "Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs," J. Opt. Soc. Am. A 20, 1-10 (2003).
[CrossRef]

P. Artal, E. Berrio, A Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 620-628 (2002).
[CrossRef]

J. Opt. Soc. Am. A.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A. 19, 2329-2348 (2002).
[CrossRef]

J. Refractive Surg.

D. R. Neal, C. D. Baer, and D. M. Topa, "Errors in Zernike transformations and non-modal reconstruction methods," J. Refractive Surg. 21, 558-562 (2005).

J. Vision

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001).
[CrossRef]

Ophthalmology

J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

J. Carroll, D. C. Gray, A. Roorda, D. R. Williams, "Recent advances in retinal imaging with adaptive optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Optom. Vision Sci.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003)
[CrossRef]

L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005).
[CrossRef]

Proc. SPIE

M. T. Sheehan, A. V. Goncharov, and J. C. Dainty, "Design of a versatile clinical aberrometer," Proc. SPIE 5962, 59620M (2005).

Vision Res.

A. Guirao and P. Artal, "Off-axis monochromatic aberrations estimated from double pass measurements in the human eye," Vision Res. 39, 207-217 (1999).
[CrossRef] [PubMed]

G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001).
[CrossRef] [PubMed]

J. A. M. Jennings, and W. N. Charman, "Off-axis image quality in the human eye," Vision Res. 21, 445-455 (1981).
[CrossRef] [PubMed]

Other

A. Bradley, and L. N. Thibos, "Modeling off-axis vision - I: the optical effects of decentering visual targets or the eye's entrance pupil," in Vision Models for Target Detection and Resolution, E. Peli, ed., (World Scientific Press, 1995), pp. 313-337.

L. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and its Applications, OSA Technical Digest, paper SuC1 (2000).

A. V. Goncharov and C. Dainty, "Wide-Field Schematic Eye Model with Gradient-Index Lens," accepted for publication in JOSA A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical layout of the versatile HS WFS. Retinal conjugates are shown by a triangle icon. Pupil conjugates are shown by a circle icon.

Fig. 2.
Fig. 2.

Phase maps as measured by the ZyWave and the experimental WFS for six eyes over a 6 mm pupil diameter. Defocus Z 0 2 has been removed from the analysis. The colour scales represent wavefront phase (microns) and are consistent within each pair of results.

Fig. 3.
Fig. 3.

Phase maps for subjects 7 and 8 over a 6 mm pupil diameter (defocus Z 0 2 removed from analysis) as measured by the ZyWave and the experimental WFS. Each set of Zernike coefficients are subtracted from each other and the residual Zernike coefficients are used to reconstruct the residual phase map shown. The colour scales represent wavefront phase (microns) and are consistent for each pair of phase maps but reduced for the residual phase maps to allow detail to be discernable.

Fig. 4.
Fig. 4.

The distribution of the Zernike coefficients for on-axis measurements. Note that scales are only consistent within a particular aberration order. The scales on the x- and y- axes respectively are: (-1 to +1 microns, and 0 to 14) for 2nd order, (-0.5 to +0.5 microns, and 0 to 14) for 3rd order, and (-0.5 to +0.5 microns, and 0 to 35) for 4th order. The x-axis value refers to the middle value of that particular bin.

Fig. 5.
Fig. 5.

Histogram displaying the distribution of spherical aberration for 60 eyes for 6 mm pupil. The x-axis value refers to the middle value of that particular bin.

Fig. 6.
Fig. 6.

The statistical distribution of Zernike coefficients over 6 mm pupil diameters for modes up to the 5th order as measured by the experimental WFS and those estimated from Thibos et al. [2]. The corresponding mean values are shown as square icons and triangle icons respectively. Error bars represent ± 2 standard deviations.

Fig. 7.
Fig. 7.

Phase maps for three eyes of ocular aberrations over the central visual field for 6 mm pupils. Off-axis phase map are relative to 5 degree field angles. Note the colour scale is different between these maps due to the large variation in range between different field angles.

Fig. 8.
Fig. 8.

On-axis, off-axis, and residual phase maps for 2 eyes. All results presented over a 6 mm pupil diameter with defocus removed. The wavefront RMS (microns) is overlaid on each phase map. The residual phase map for each off-axis field angle is generated by subtracting Zernike coefficients for on-axis aberrations from Zernike coefficients for off-axis aberrations.

Fig. 9.
Fig. 9.

The statistical distribution of Zernike coefficients measured on-axis compared to off-axis as measured by the experimental WFS for modes up to the 5th order. Mean values are represented by square and triangle icons. Error bars represent +/- 2 standard deviations.

Tables (1)

Tables Icon

Table 1. Mean residual Zernike coefficients (21 eyes) for a 6mm pupil diameter (defocus Z20 removed).

Metrics