Abstract

Detection of molecules with wide unresolved rotational-vibrational absorption bands is demonstrated by using Quartz Enhanced Photoacoustic Spectroscopy and an amplitude modulated, high power, thermoelectrically cooled quantum cascade laser operating at 8.4 μm in an external cavity configuration. The laser source exhibits single frequency tuning of 135 cm-1 with a maximum optical output power of 50 mW. For trace-gas detection of Freon 125 (pentafluoroethane) at 1208.62 cm-1 a normalized noise equivalent absorption coefficient of NNEA=2.64×10-9 cm-1∙W/Hz1/2 was obtained. Noise equivalent sensitivity at ppbv level as well as spectroscopic chemical analysis of a mixture of two broadband absorbers (Freon 125 and acetone) with overlapping absorption spectra were demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
    [CrossRef]
  2. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
    [CrossRef]
  3. J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
    [CrossRef]
  4. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli and Federico Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
    [CrossRef]
  5. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  6. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
    [CrossRef]
  7. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
    [CrossRef]
  8. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
    [CrossRef]
  9. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849
  10. M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007).
    [CrossRef] [PubMed]
  11. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli and Federico Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
    [CrossRef]
  12. A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Opt. Lett. 27, 1902-1904 (2002).
    [CrossRef]
  13. A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
    [CrossRef]
  14. M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
    [CrossRef]
  15. C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, "Coherent instabilities in a semiconductor laser with fast gain recovery," Phys. Rev. A 75, 031802(R) (2007).
    [CrossRef]
  16. G. Wysocki, et.al "High power continues wave broadly tunable external cavity quantum cascade laser operating at 8.4 μm for high resolution molecular spectroscopy," to be published.
  17. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
    [CrossRef]
  18. A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
    [CrossRef]
  19. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
    [CrossRef]
  20. G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
    [CrossRef]

2007 (2)

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
[CrossRef]

M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007).
[CrossRef] [PubMed]

2006 (4)

M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

2005 (5)

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

2004 (2)

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

2003 (1)

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

2002 (1)

2000 (1)

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Acimovic, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Aellen, T.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

Bakhirkin, Yu. A.

Beck, M.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

Blaser, S.

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

Bonetti, Y.

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Cannon, B. D.

M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007).
[CrossRef] [PubMed]

M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
[CrossRef]

Curl, R. F.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Opt. Lett. 27, 1902-1904 (2002).
[CrossRef]

Darvish, S. R.

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

David, J.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Doris, L.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Dunayevskiy, I. G.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

Evans, A.

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Faist, J.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

Gini, E.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

Giovannini, M.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Go, R.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

Gokden, B.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Grober, R. D.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Hespanha, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Hessman, D.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Hofstetter, D.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

Hvozdara, L.

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

Karrai, K.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Kindlemann, P. J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Kosterev, A. A.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
[CrossRef]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Opt. Lett. 27, 1902-1904 (2002).
[CrossRef]

Lewicki, R.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
[CrossRef]

Malinovsky, A.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Manus, S.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Maulini, R.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Mi, K.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Morozov, A.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Morse, A. S.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Muller, A.

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Myers, T. L.

Nguyen, J.

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

Patel, C. K. N.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

Phillips, M. C.

M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007).
[CrossRef] [PubMed]

M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
[CrossRef]

Pushkarsky, M.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

Razeghi, M.

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Schuck, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Serebryakov, D.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Slivken, S.

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Taubman, M. S.

M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
[CrossRef]

Tiemann, I.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Tittel, F. K.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Opt. Lett. 27, 1902-1904 (2002).
[CrossRef]

Tsekoun, A.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

Wojcik, M. D.

M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007).
[CrossRef] [PubMed]

M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
[CrossRef]

Wysocki, G.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

Yarekha, D.

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Yu, J. S.

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

Appl. Phys. B (5)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006).
[CrossRef]

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004).
[CrossRef]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003).
[CrossRef]

S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004).
[CrossRef]

J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006).
[CrossRef]

Opt. Lett. (2)

Proc Natl. Acad. Sci. U S A. (1)

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849

Rev. Sci. Instrum. (2)

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000).
[CrossRef]

Other (4)

C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, "Coherent instabilities in a semiconductor laser with fast gain recovery," Phys. Rev. A 75, 031802(R) (2007).
[CrossRef]

G. Wysocki, et.al "High power continues wave broadly tunable external cavity quantum cascade laser operating at 8.4 μm for high resolution molecular spectroscopy," to be published.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli and Federico Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli and Federico Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the QEPAS based sensor platform with a CW EC-QCL spectroscopic source operating at 8.4 μm

Fig. 2.
Fig. 2.

An AM-QEPAS spectrum normalized to optical power recorded for a 5 ppm Freon 125 in N2 mixture (the in phase X'PA and quadrature Y'PA components after rotation of the valence reference plane) fitted to the reference spectrum obtained from the PNNL database. The inset illustrates the calibration curve for absorption coefficient as a function of the photoacoustic signal.

Fig. 3.
Fig. 3.

Freon 125 concentration measurements performed with a tunable cw 8.4 μm EC-QCL based AM-QEPAS trace gas sensor system at 1208.62cm-1. The inset depicts the spectral location of the laser frequency on the Freon 125 absorption spectrum accessible by the EC-QCL.

Fig. 4.
Fig. 4.

Allan deviation (the square root of the Allan variance) calculated for the longest periods of steady Freon 125 concentrations in Fig. 3: red curve – 5 ppm Freon 125 in nitrogen, blue curve – pure nitrogen.

Fig. 5.
Fig. 5.

AM-QEPAS spectrum of a Freon 125 and acetone mixture normalized to optical power plotted together with retrieved component spectra of Freon 125 (red line) and acetone (green line). The calculated acetone spectrum was fitted by a reference spectrum of acetone from the PNNL spectroscopic database shown as a black line.

Metrics