Abstract

Microscopic investigations of UV-induced formation of laser damage on LiB3O5 optical surfaces during long-term sum-frequency generation (SFG) uncovers a significant growth of a SiO2-amorphous layer spatially limited to the illuminated area. The layer gives rise to a catastrophic break-down of the LiB3O5-output surface upon long-term laser operation even at intensities far below the laser-induced damage threshold. The interaction of UV laser light, LiB3O5 surface and foreign atoms in the ambient atmosphere is discussed in the frame of a two-step process for surface-damage formation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
    [CrossRef]
  2. Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
    [CrossRef]
  3. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621, (1989).
    [CrossRef]
  4. Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
    [CrossRef]
  5. H. König and R. Hoppe, “Über Borate der Alkalimetalle II Zur Kenntniss von LiB3O5,” Z. anorg. allg. Chem. 439, 71–79, (1978).
    [CrossRef]
  6. V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).
  7. W.E. Morgan and J.R. Van Wazer, “Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IV-a Compounds,” J. Phys. Chem. 77, 964–969, (1973).
    [CrossRef]
  8. R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
    [CrossRef]
  9. C. Licoppe, Y.I. Nissim, and J.M. Moison, “Surface chemistry and growth modes in the photochemical deposition of silica films,” Phys. Rev. B 45, 6275–6278, (1992).
    [CrossRef]
  10. K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett. 69, 482–484, (1996).
    [CrossRef]
  11. H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys. A 79, 1567–1570, (2004).
  12. M. Suto and L.C. Lee, “Quantitative photoexcitation study of SiH4 in vacuum ultraviolet,” J. Chem. Phys. 84, 1160–1164, (1986).
    [CrossRef]
  13. F. Houzay, J.M. Moison, and C.A. Sèbenne, “Surface localization of the photochemical vapor deposition of SiO2 on InP at low pressure and room temperature,” Appl. Phys. Lett. 58, 1071–1073, (1991).
    [CrossRef]
  14. C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
    [CrossRef]
  15. R. Waser, Nanoelectronics and Information Technology, (Wiley-VCH, Weinheim2003).
  16. W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
    [CrossRef]
  17. C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
    [CrossRef] [PubMed]
  18. S. Stolbov and T.S. Rahman, “Alkali-Induced Enhancement of Surface Electronic Polarizibility,” Phys. Rev. Lett. 96, 186801, (2006).
    [CrossRef] [PubMed]

2006 (1)

S. Stolbov and T.S. Rahman, “Alkali-Induced Enhancement of Surface Electronic Polarizibility,” Phys. Rev. Lett. 96, 186801, (2006).
[CrossRef] [PubMed]

2005 (1)

C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
[CrossRef] [PubMed]

2004 (1)

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys. A 79, 1567–1570, (2004).

2003 (2)

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

2000 (2)

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

1999 (1)

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

1996 (1)

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett. 69, 482–484, (1996).
[CrossRef]

1994 (1)

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

1992 (1)

C. Licoppe, Y.I. Nissim, and J.M. Moison, “Surface chemistry and growth modes in the photochemical deposition of silica films,” Phys. Rev. B 45, 6275–6278, (1992).
[CrossRef]

1991 (1)

F. Houzay, J.M. Moison, and C.A. Sèbenne, “Surface localization of the photochemical vapor deposition of SiO2 on InP at low pressure and room temperature,” Appl. Phys. Lett. 58, 1071–1073, (1991).
[CrossRef]

1989 (1)

1986 (1)

M. Suto and L.C. Lee, “Quantitative photoexcitation study of SiH4 in vacuum ultraviolet,” J. Chem. Phys. 84, 1160–1164, (1986).
[CrossRef]

1982 (1)

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

1978 (1)

H. König and R. Hoppe, “Über Borate der Alkalimetalle II Zur Kenntniss von LiB3O5,” Z. anorg. allg. Chem. 439, 71–79, (1978).
[CrossRef]

1973 (1)

W.E. Morgan and J.R. Van Wazer, “Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IV-a Compounds,” J. Phys. Chem. 77, 964–969, (1973).
[CrossRef]

Abele, C.C.

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

Andreatta, R.W.

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

Atuchin, V.V.

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

Awazu, K.

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett. 69, 482–484, (1996).
[CrossRef]

Catlow, C.R.A.

C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
[CrossRef] [PubMed]

Chen,

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Chen, C.

Chen, C.T.

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

Chirila, M.M.

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

Eden, J.G.

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

El-Sayed, I.

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

French, S.A.

C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
[CrossRef] [PubMed]

Fujita, H.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Furukawa, Y.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Garces, N.Y.

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

Greene, J.E.

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

Gubenko, L.I.

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

Halliburton, L.E.

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

Hatanaka, Y.

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

Hong, W.

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

Hoppe, R.

H. König and R. Hoppe, “Über Borate der Alkalimetalle II Zur Kenntniss von LiB3O5,” Z. anorg. allg. Chem. 439, 71–79, (1978).
[CrossRef]

Houzay, F.

F. Houzay, J.M. Moison, and C.A. Sèbenne, “Surface localization of the photochemical vapor deposition of SiO2 on InP at low pressure and room temperature,” Appl. Phys. Lett. 58, 1071–1073, (1991).
[CrossRef]

Inoue, N.

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys. A 79, 1567–1570, (2004).

Isaenko, L.I.

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

Jiang,

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Jiang, A.

Kesler, V.G.

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

Koga, N.

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

König, H.

H. König and R. Hoppe, “Über Borate der Alkalimetalle II Zur Kenntniss von LiB3O5,” Z. anorg. allg. Chem. 439, 71–79, (1978).
[CrossRef]

Lee, L.C.

M. Suto and L.C. Lee, “Quantitative photoexcitation study of SiH4 in vacuum ultraviolet,” J. Chem. Phys. 84, 1160–1164, (1986).
[CrossRef]

Lee, M.H.

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

Li, R.

Licoppe, C.

C. Licoppe, Y.I. Nissim, and J.M. Moison, “Surface chemistry and growth modes in the photochemical deposition of silica films,” Phys. Rev. B 45, 6275–6278, (1992).
[CrossRef]

Lin,

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Lin, J.

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

Lin, S.

Lin, Z.S.

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

Lubben, D.

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

Lupinski, D.

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

Markgraf, S.A.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Mikami, M.

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

Moison, J.M.

C. Licoppe, Y.I. Nissim, and J.M. Moison, “Surface chemistry and growth modes in the photochemical deposition of silica films,” Phys. Rev. B 45, 6275–6278, (1992).
[CrossRef]

F. Houzay, J.M. Moison, and C.A. Sèbenne, “Surface localization of the photochemical vapor deposition of SiO2 on InP at low pressure and room temperature,” Appl. Phys. Lett. 58, 1071–1073, (1991).
[CrossRef]

Morgan, W.E.

W.E. Morgan and J.R. Van Wazer, “Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IV-a Compounds,” J. Phys. Chem. 77, 964–969, (1973).
[CrossRef]

Muguruma, C.

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

Nakai, S.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Nissim, Y.I.

C. Licoppe, Y.I. Nissim, and J.M. Moison, “Surface chemistry and growth modes in the photochemical deposition of silica films,” Phys. Rev. B 45, 6275–6278, (1992).
[CrossRef]

Okoshi, M.

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys. A 79, 1567–1570, (2004).

Onuki, H.

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett. 69, 482–484, (1996).
[CrossRef]

Osmundsen, J.F.

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

Pobrovsky, L.D.

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

Rahman, T.S.

S. Stolbov and T.S. Rahman, “Alkali-Induced Enhancement of Surface Electronic Polarizibility,” Phys. Rev. Lett. 96, 186801, (2006).
[CrossRef] [PubMed]

Sasaki, T.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Sato, M.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Sèbenne, C.A.

F. Houzay, J.M. Moison, and C.A. Sèbenne, “Surface localization of the photochemical vapor deposition of SiO2 on InP at low pressure and room temperature,” Appl. Phys. Lett. 58, 1071–1073, (1991).
[CrossRef]

Sokol, A.A.

C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
[CrossRef] [PubMed]

Stolbov, S.

S. Stolbov and T.S. Rahman, “Alkali-Induced Enhancement of Surface Electronic Polarizibility,” Phys. Rev. Lett. 96, 186801, (2006).
[CrossRef] [PubMed]

Suto, M.

M. Suto and L.C. Lee, “Quantitative photoexcitation study of SiH4 in vacuum ultraviolet,” J. Chem. Phys. 84, 1160–1164, (1986).
[CrossRef]

Takao, H.

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys. A 79, 1567–1570, (2004).

Tanaka, M.

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

Thomas, J.M.

C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
[CrossRef] [PubMed]

Van Wazer, J.R.

W.E. Morgan and J.R. Van Wazer, “Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IV-a Compounds,” J. Phys. Chem. 77, 964–969, (1973).
[CrossRef]

Villeval, P.

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

Wang, Z.Z.

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

Waser, R.

R. Waser, Nanoelectronics and Information Technology, (Wiley-VCH, Weinheim2003).

Wu,

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Wu, B.

Wu, Y.

Yamanaka, T.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

Ye,

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Yoshida, H.

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

You, G.

Zeng,

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Adv. Mater. (1)

Chen, Ye, Lin, Jiang, Zeng, and Wu, “Computer-Assisted Search for Nonlinear Optical Crystals,” Adv. Mater. 11, 1071–1078, (1999).
[CrossRef]

Appl. Phys. A (1)

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys. A 79, 1567–1570, (2004).

Appl. Phys. Lett. (4)

R.W. Andreatta, C.C. Abele, J.F. Osmundsen, J.G. Eden, D. Lubben, and J.E. Greene, “Low-temperature growth of polycrystalline Si and Ge films by ultraviolet laser photodissocation of silane and germane,” Appl. Phys. Lett. 40, 183–185, (1982).
[CrossRef]

Y. Furukawa, S.A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate, LiB3O5, single crystals,” Appl. Phys. Lett. 65, 1480–1482, (1994).
[CrossRef]

F. Houzay, J.M. Moison, and C.A. Sèbenne, “Surface localization of the photochemical vapor deposition of SiO2 on InP at low pressure and room temperature,” Appl. Phys. Lett. 58, 1071–1073, (1991).
[CrossRef]

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett. 69, 482–484, (1996).
[CrossRef]

J. Chem. Phys. (1)

M. Suto and L.C. Lee, “Quantitative photoexcitation study of SiH4 in vacuum ultraviolet,” J. Chem. Phys. 84, 1160–1164, (1986).
[CrossRef]

J. of Cer. Proc. Res. (1)

V.V. Atuchin, L.D. Pobrovsky, V.G. Kesler, L.I. Isaenko, and L.I. Gubenko, “Structure and chemistry of LiB3O5 (LBO) optical surfaces,” J. of Cer. Proc. Res. 4, 84–87, (2003).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

W.E. Morgan and J.R. Van Wazer, “Binding Energy Shifts in the X-Ray Photoelectron Spectra of a Series of Related Group IV-a Compounds,” J. Phys. Chem. 77, 964–969, (1973).
[CrossRef]

J. Phys. Chem. A (1)

C. Muguruma, N. Koga, Y. Hatanaka, I. El-Sayed, M. Mikami, and M. Tanaka, “Theoretical Study of Ultraviolet Absorption Spectra of Tetra- and Pentacoordinate Silicon Compounds,” J. Phys. Chem. A 104, 4928–1935, (2000).
[CrossRef]

Phil. Trans. R. Soc. A (1)

C.R.A. Catlow, S.A. French, A.A. Sokol, and J.M. Thomas, “Computational approaches to determination of active site structures and reaction mechanisms in heterogeneous catalysts,” Phil. Trans. R. Soc. A 363, 913–936, (2005).
[CrossRef] [PubMed]

Phys. Rev. B (3)

Z.S. Lin, J. Lin, Z.Z. Wang, C.T. Chen, and M.H. Lee, “Mechanism for linear and nonlinear optical effects in LiB3O5, CsB3O5, and CsLiB6O10 crystals,” Phys. Rev. B 62, 1757–1764, (2000).
[CrossRef]

W. Hong, M.M. Chirila, N.Y. Garces, L.E. Halliburton, D. Lupinski, and P. Villeval, “Electron paramagnetic resonance and electron-nuclear double resonance study of trapped-hole centers in LiB3O5 crystals,” Phys. Rev. B 68, 094111, (2003).
[CrossRef]

C. Licoppe, Y.I. Nissim, and J.M. Moison, “Surface chemistry and growth modes in the photochemical deposition of silica films,” Phys. Rev. B 45, 6275–6278, (1992).
[CrossRef]

Phys. Rev. Lett. (1)

S. Stolbov and T.S. Rahman, “Alkali-Induced Enhancement of Surface Electronic Polarizibility,” Phys. Rev. Lett. 96, 186801, (2006).
[CrossRef] [PubMed]

Z. anorg. allg. Chem. (1)

H. König and R. Hoppe, “Über Borate der Alkalimetalle II Zur Kenntniss von LiB3O5,” Z. anorg. allg. Chem. 439, 71–79, (1978).
[CrossRef]

Other (1)

R. Waser, Nanoelectronics and Information Technology, (Wiley-VCH, Weinheim2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Microscopic images of the LBO output surface after an SFG-exposure of 192 hours: a) determined by LCM, and b) determined by AFM.

Fig. 2.
Fig. 2.

Surface profiles of the LBO sample determined by LCM as a function of SFG-exposure exemplarily at the beginning (t = 0h) and after 24, 48, 120, and 240 hours. The data points were determined along the scan line shown in the inserted spot image. The horizontal dotted lines indicate the mean-surface roughness of the LBO crystal.

Fig. 3.
Fig. 3.

Height profile of a cracked surface area related to the LCM-image shown in the insert. Such surface cracks predominantly occur at SFG-exposure≫500 h, or at high SFG-efficiencies, i. e., at high intensities of the ultraviolet laser beam.

Tables (1)

Tables Icon

Table 1. Results of an ESC analysis for one area covering the regime of surface elevation (exposed) as well as an unaffected (unexposed) area of the LBO surface. The energetic positions of the determined peaks are referenced to the hydrocarbon-contaminant C (1s) line, assuming a value of 285.0 eV [7]. The values reflect the fraction of the particular element related to the total ESCA-signal (relative error ≈ 10%). An increase of the peak at 103.9 eV by a factor of five is found in the exposed area.

Metrics