Abstract

We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, and J. M. Morookian, "Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications," J. Lightwave Technol. 18, 1685-1696 (2000).
    [CrossRef]
  2. I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
    [CrossRef]
  3. V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
    [CrossRef]
  4. I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," in MILCOM 2006, Technical Digest (CD), (Washington, DC, 2006), paper US-W-Y-4.
  5. I. Glesk, Y.-K. Huang, C.-S. Bres, P. R. Prucnal, T. H. Curtis, and W. C. Kwong, "Optical Approach to Avionic Platforms Based on OCDMA," in OFC 2007, Technical Digest (CD) (Optical Society of America, 2007), paper OMO8.
  6. D. Iazikov, C. M. Greiner, and T. W. Mossberg, "Integrated holographic filters for flat-passband optical multiplexers," Opt. Express 14, 3497 (2006).
    [CrossRef]
  7. Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
    [CrossRef]
  8. L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
    [CrossRef]
  9. H. Fathallah, L. A. Rusch, and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system," J. Lightwave Technol. 17, 397 (1999).
    [CrossRef]
  10. J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
    [CrossRef]
  11. K. Takiguchi, T. Shibata and M. Itoh, "Encoder/decoder on planar lightwave circuit for time-spreading/ wavelength-hopping optical CDMA," Electron. Lett. 38, 469 (2002).
    [CrossRef]
  12. S. Yegnanarayanan, A. S. Bushan, and B. Jalali, "Fast wavelength- hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
    [CrossRef]
  13. G.-C. Yang, W.C. Kwong, Prime Codes with applications to CDMA Optical and Wireless Networks, (Artech House, Norwood, Massachusetts, 2002).
  14. I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).
  15. C.-C. Hsu, G.-C. Yang, and W. C. Kwong, "Performance analysis of 2-D optical codes with arbitrary cross-correlation values under the chip-asynchronous assumption," IEEE Commun. Lett. 11, 170 - 172 (2007).
    [CrossRef]
  16. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
    [CrossRef]
  17. C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors," Opt. Lett. 30, 38-40 (2005).
    [CrossRef] [PubMed]

2007

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
[CrossRef]

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, "Performance analysis of 2-D optical codes with arbitrary cross-correlation values under the chip-asynchronous assumption," IEEE Commun. Lett. 11, 170 - 172 (2007).
[CrossRef]

2006

D. Iazikov, C. M. Greiner, and T. W. Mossberg, "Integrated holographic filters for flat-passband optical multiplexers," Opt. Express 14, 3497 (2006).
[CrossRef]

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

2005

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors," Opt. Lett. 30, 38-40 (2005).
[CrossRef] [PubMed]

2004

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

2003

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

2002

K. Takiguchi, T. Shibata and M. Itoh, "Encoder/decoder on planar lightwave circuit for time-spreading/ wavelength-hopping optical CDMA," Electron. Lett. 38, 469 (2002).
[CrossRef]

2000

S. Yegnanarayanan, A. S. Bushan, and B. Jalali, "Fast wavelength- hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
[CrossRef]

A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, and J. M. Morookian, "Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications," J. Lightwave Technol. 18, 1685-1696 (2000).
[CrossRef]

1999

1998

L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
[CrossRef]

Baby, V.

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

Benjamin, S. D.

L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
[CrossRef]

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Bres, C.-S

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

Bres, C.-S.

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
[CrossRef]

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

Bunning, T. J.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Bushan, A. S.

S. Yegnanarayanan, A. S. Bushan, and B. Jalali, "Fast wavelength- hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
[CrossRef]

Castro, J. M.

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Chen, L. R.

L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
[CrossRef]

Djordjevic, I.

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Fathallah, H.

Feng, H. X. C.

Gagliardi, R. M.

Geraghty, D. F.

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Glesk, I.

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
[CrossRef]

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

Greiner, C. M.

D. Iazikov, C. M. Greiner, and T. W. Mossberg, "Integrated holographic filters for flat-passband optical multiplexers," Opt. Express 14, 3497 (2006).
[CrossRef]

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors," Opt. Lett. 30, 38-40 (2005).
[CrossRef] [PubMed]

Heritage, J. P.

Hsu, C.-C.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, "Performance analysis of 2-D optical codes with arbitrary cross-correlation values under the chip-asynchronous assumption," IEEE Commun. Lett. 11, 170 - 172 (2007).
[CrossRef]

Huang, Y.-K.

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
[CrossRef]

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

Iazikov, D.

D. Iazikov, C. M. Greiner, and T. W. Mossberg, "Integrated holographic filters for flat-passband optical multiplexers," Opt. Express 14, 3497 (2006).
[CrossRef]

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors," Opt. Lett. 30, 38-40 (2005).
[CrossRef] [PubMed]

Itoh, M.

K. Takiguchi, T. Shibata and M. Itoh, "Encoder/decoder on planar lightwave circuit for time-spreading/ wavelength-hopping optical CDMA," Electron. Lett. 38, 469 (2002).
[CrossRef]

Jalali, B.

S. Yegnanarayanan, A. S. Bushan, and B. Jalali, "Fast wavelength- hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
[CrossRef]

Kwong, W. C.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, "Performance analysis of 2-D optical codes with arbitrary cross-correlation values under the chip-asynchronous assumption," IEEE Commun. Lett. 11, 170 - 172 (2007).
[CrossRef]

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

LaRochelle, S.

Mendez, A. J.

Minkov, L.

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Morookian, J. M.

Mossberg, T. W.

D. Iazikov, C. M. Greiner, and T. W. Mossberg, "Integrated holographic filters for flat-passband optical multiplexers," Opt. Express 14, 3497 (2006).
[CrossRef]

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors," Opt. Lett. 30, 38-40 (2005).
[CrossRef] [PubMed]

Natarajan, L. V.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Prucnal, P. R.

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
[CrossRef]

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

Rand, D.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

Rusch, L. A.

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Shibata, T.

K. Takiguchi, T. Shibata and M. Itoh, "Encoder/decoder on planar lightwave circuit for time-spreading/ wavelength-hopping optical CDMA," Electron. Lett. 38, 469 (2002).
[CrossRef]

Sipe, J. E.

L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
[CrossRef]

Smith, P. W. E

L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
[CrossRef]

Sutherland, R. L.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Takiguchi, K.

K. Takiguchi, T. Shibata and M. Itoh, "Encoder/decoder on planar lightwave circuit for time-spreading/ wavelength-hopping optical CDMA," Electron. Lett. 38, 469 (2002).
[CrossRef]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Tondiglia, V. P.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Xu, L.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

Yang, G.-C.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, "Performance analysis of 2-D optical codes with arbitrary cross-correlation values under the chip-asynchronous assumption," IEEE Commun. Lett. 11, 170 - 172 (2007).
[CrossRef]

Yegnanarayanan, S.

S. Yegnanarayanan, A. S. Bushan, and B. Jalali, "Fast wavelength- hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
[CrossRef]

Acta Phys. Slov.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, P. R. Prucnal, and W. C. Kwong, "A design of a wavelength-hopping time-spreading incoherent optical CDMA system," Acta Phys. Slov. 55, 211-227 (2005).

Chem. Mater.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003).
[CrossRef]

Electron. Lett.

K. Takiguchi, T. Shibata and M. Itoh, "Encoder/decoder on planar lightwave circuit for time-spreading/ wavelength-hopping optical CDMA," Electron. Lett. 38, 469 (2002).
[CrossRef]

V. Baby, C.-S Bres, L. Xu, I. Glesk, and P. R. Prucnal, "Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency-hopping time-spreading OCDMA," Electron. Lett. 40, 755 (2004).
[CrossRef]

IEEE Commun. Lett.

C.-C. Hsu, G.-C. Yang, and W. C. Kwong, "Performance analysis of 2-D optical codes with arbitrary cross-correlation values under the chip-asynchronous assumption," IEEE Commun. Lett. 11, 170 - 172 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Yegnanarayanan, A. S. Bushan, and B. Jalali, "Fast wavelength- hopping time-spreading encoding/decoding for optical CDMA," IEEE Photon. Technol. Lett. 12, 573-575 (2000).
[CrossRef]

J. M. Castro, I. Djordjevic, L. Minkov, C. M. Greiner, D. Iazikov, T. W. Mossberg, and D. F. Geraghty, "Compact OCDMA encoders based on the antisymmetric waveguide Bragg grating," IEEE Photon. Technol. Lett. 18, 892-894 (2006).
[CrossRef]

Y.-K. Huang, V. Baby, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, "Integrated Holographic Encoder for Wavelength-Hopping/Time-spreading Optical CDMA," IEEE Photon. Technol. Lett. 17, 825-827 (2005).
[CrossRef]

J. Lightwave Technol.

J. Quantum Electron.

L. R. Chen, S. D. Benjamin, P. W. E Smith, and J. E. Sipe, "Applications of ultrashort pulse propagation in Bragg gratings for wavelength- division-multiplexing and code-division multiple access," J. Quantum Electron. 34, 2117 (1998).
[CrossRef]

Opt. Commun.

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," Opt. Commun. 271, 65-70 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G.-C. Yang, W.C. Kwong, Prime Codes with applications to CDMA Optical and Wireless Networks, (Artech House, Norwood, Massachusetts, 2002).

I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, "Design and demonstration of a novel Optical CDMA platform for avionics applications," in MILCOM 2006, Technical Digest (CD), (Washington, DC, 2006), paper US-W-Y-4.

I. Glesk, Y.-K. Huang, C.-S. Bres, P. R. Prucnal, T. H. Curtis, and W. C. Kwong, "Optical Approach to Avionic Platforms Based on OCDMA," in OFC 2007, Technical Digest (CD) (Optical Society of America, 2007), paper OMO8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The (1,2,3) and (1,3,5) codes in the (3,11) carrier-hopping prime code family and the respective matrix representation of the WHTS sequence. The horizontal and vertical numbers in the matrix represent the chip position and transmitting carrier.

Fig. 2.
Fig. 2.

(a) Schematic top view of the 1×2 integrated holographic OCDMA encoder. The optical path for generation of code (1,2,3) is shown as dashed lines. A broad-band HBR splits off a fraction of the exiting (1,2,3) code sequence and converts it to code (1, 3, 5) (dotted lines) by double passing of the HBR array. Dimensions in the drawing are not to scale. The inset shows the photograph of packaged device chip. (b) Schematic detailing parameters of the encoder’s input-output channel waveguide manifold and locations of the HBR centers of curvature. The chip size, containing a matched encoder/decoder pair (only the encoder is shown here), is about 5×33 mm2.

Fig. 3.
Fig. 3.

(a) Spectra and (b) time signatures of the generated WHTS codes.

Fig. 4.
Fig. 4.

Experimental setup for OCDMA data transmission using the matched dual-code encoder and decoder. The insets show the multiplexed signals before the decoder and the decoded signal afterwards.

Fig. 5.
Fig. 5.

The measured BER curves for data transmission using the dual-code encoder and decoder. A power penalty of only 0.5 dB is obtained for only two users.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x i = [ ( 1 , 1 ) , ( 2 , i ) , ( 3 , 2 p ( i 1 ) + 1 ) , . . . . . , ( w , ( w 1 ) p ( i 1 ) + 1 ) ] , for i [ 1 , p ]
P e = Θ ( w 4 ( K 1 ) σ MAI 2 + σ NN 2 )
I code 1 Δ n ˜ λ 1 2 ( ct 2 n 0 ) + Δ n ˜ λ 2 2 ( ct 2 n 0 + d ) + Δ n ˜ λ 3 2 ( ct 2 n 0 + 2 d )
I code 2 Δ n ˆ λ 1 2 ( ct 2 n 0 ) + Δ n ˆ λ 2 2 ( ct 2 n 0 + 2 d ) + Δ n ˆ λ 3 2 ( ct 2 n 0 + 4 d )

Metrics