Abstract

Optical threshold functions are a basic building block for all-optical signal processing, and this paper investigates a threshold function design reliant on a single active element. An optical threshold function based on nonlinear polarization rotation in a single semiconductor optical amplifier is proposed. It functions due to an induced modification of the birefringence of a semiconductor optical amplifier caused by an externally injected optical control signal. It is shown that switching from both the TE to the TM mode and vice versa is possible. The measured results are supported by simulation results based on the SOA rate equations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
    [CrossRef]
  2. M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
    [CrossRef]
  3. Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
    [CrossRef]
  4. H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photon. Technol. Lett. 11, 970-972 (1999).
    [CrossRef]
  5. H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
    [CrossRef]
  6. T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
    [CrossRef]
  7. Y. Takahashi, A. Neogi, H. Kawaguchi, "Polarization dependent nonlinear gain in semiconductor optical amplifiers," J. Quantum Electron. 34, 1660-1672, (1998).
    [CrossRef]

2003 (2)

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

2002 (1)

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

2000 (1)

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

1999 (1)

H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photon. Technol. Lett. 11, 970-972 (1999).
[CrossRef]

1998 (2)

T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
[CrossRef]

Y. Takahashi, A. Neogi, H. Kawaguchi, "Polarization dependent nonlinear gain in semiconductor optical amplifiers," J. Quantum Electron. 34, 1660-1672, (1998).
[CrossRef]

Blok, H.

T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
[CrossRef]

Blüm, M.W.

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

de Waardt, H.

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

Dorren, H.J.S.

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

Erasme, D.

H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photon. Technol. Lett. 11, 970-972 (1999).
[CrossRef]

Fasolino, A.

T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
[CrossRef]

Frietman, E.E.E.

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

Guekos, G.

H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photon. Technol. Lett. 11, 970-972 (1999).
[CrossRef]

Hill, M.T.

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

Hoppenbrouwers, J.J.L.

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

Kawaguchi, H.

Y. Takahashi, A. Neogi, H. Kawaguchi, "Polarization dependent nonlinear gain in semiconductor optical amplifiers," J. Quantum Electron. 34, 1660-1672, (1998).
[CrossRef]

Khoe, G. D.

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

Khoe, G.D.

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

Lenstra, D.

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
[CrossRef]

Liu, Y.

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

Mos, E.C.

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

Neogi, A.

Y. Takahashi, A. Neogi, H. Kawaguchi, "Polarization dependent nonlinear gain in semiconductor optical amplifiers," J. Quantum Electron. 34, 1660-1672, (1998).
[CrossRef]

Schleipen, J.J.H.B.

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

Soto, H.

H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photon. Technol. Lett. 11, 970-972 (1999).
[CrossRef]

Takahashi, Y.

Y. Takahashi, A. Neogi, H. Kawaguchi, "Polarization dependent nonlinear gain in semiconductor optical amplifiers," J. Quantum Electron. 34, 1660-1672, (1998).
[CrossRef]

Visser, T.D.

T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
[CrossRef]

J. Quantum Electron. (2)

H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," J. Quantum Electron. 39, 141-148, (2003).
[CrossRef]

Y. Takahashi, A. Neogi, H. Kawaguchi, "Polarization dependent nonlinear gain in semiconductor optical amplifiers," J. Quantum Electron. 34, 1660-1672, (1998).
[CrossRef]

Photon. Technol. Lett. (2)

Y. Liu, M.T. Hill, H. de Waardt, G. D. Khoe, and H.J.S. Dorren, "All-optical buffering using laser neural networks," Photon. Technol. Lett. 15, 596-598 (2003).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photon. Technol. Lett. 11, 970-972 (1999).
[CrossRef]

Proc. SPIE (1)

T.D. Visser, D. Lenstra, H. Blok, A. Fasolino, "Propagation of Polarized Waves in Semiconductor Laser Amplifiers," Proc. SPIE,  3283, 675-682, (1998).
[CrossRef]

Trans. Neural Networks (2)

E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blüm, J.J.H.B. Schleipen, H. de Waardt, "Optical neuron by use of a laser diode with injection seeding and external optical feedback," Trans. Neural Networks 11, 988-996 (2000).
[CrossRef]

M.T. Hill, E.E.E. Frietman, H. de Waardt, G.D. Khoe, H.J.S. Dorren, "All fiber optic neural network using coupled SOA based ring lasers," Trans. Neural Networks 13, 1504-1513 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the threshold function. PC: polarization controller, SOA: semiconductor optical amplifier, CIRC: circulator, BPF: band pass filter, PBS: polarization beam splitter, ISO: isolator.

Fig. 2
Fig. 2

Spectra of the two states of the threshold function. a) λ1 = 1552.55nm is dominant until b) -1dBm of external optical power is injected, after which λ2 = 1543.55nm becomes the dominant wavelength. In each case a contrast ratio of approximately 20dB can be achieved.

Fig. 3
Fig. 3

Measured results shown in dBm and mW. Here switching is shown from the TM mode (open square) to the TE mode (solid diamond), with an extinction ratio between 15 and 20dB. Switching is achieved with an injected optical power of approximately -4dBm.

Fig. 4
Fig. 4

Analytical results are similar to the measured results shown in Fig. 5.3: switching from TM (pink squares) to TE (black diamonds).

Tables (1)

Tables Icon

Table 1. Parameter Definitions

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

θ = ϕ TE ϕ TM = 1 2 ( α TE Γ TE g TE v g TE α TM Γ TM g TM v g TM ) L
g TE = ξ TE ( 2 n x + n y N 0 ) 1 + ε ( S TE + S inj TE )
g TM = ξ TM ( 2 n y + n x N 0 ) 1 + ε ( S TM + S inj TM )
n x t = n y n x ¯ T g TE Γ TE S TE g TE Γ TE S inj TE
n y t = n y n y ¯ T g TM Γ TM S TM g TM Γ TM S inj TM
n ¯ x = n ¯ f 1 + f
n ¯ y = n ¯ 1 + f
n ¯ = I e T
S TE t = ( Γ TE g TE α cav TE cos ( θ + δ TE ) ) S TE S TM t = ( Γ TM g TM α cav TM sin ( θ + δ TM ) ) S TM
S TE / TM = P TE / TM ħ ω L v g

Metrics