Abstract

A novel approach to silicon (Si) etching has been demonstrated using glass assisted CO2 laser processing. Conventional Si etching can be performed by wet etching, dry etching, Nd:YAG or UV lasers. No CO2 laser was used to etch Si due to the absorption problem. We have etched Si with the assistance of glass beneath the Si. This approach changes light absorption behavior of Si and makes Si be etched from the top surface toward the interface. The new mechanism was discussed in viewpoint of the variation of electronic band structure, surface oxidation and light absorption of Si at high temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.K. Chung, “Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system”, J. Micromech. Microeng. 14, 656 (2004)
    [CrossRef]
  2. M.A. Gosalvez and R.M. Nieminen, “Surface morphology during anisotropic wet chemical etching of crystalline silicon,” New J. Phys. 5, 100 (2003).
    [CrossRef]
  3. Y Xiaet al., “Laser ablation of Si, Ge, ZrO, and Cu in air,” J. Phys. D: Appl. Phys. 24, 1933 (1991).
    [CrossRef]
  4. G. Han and P.T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88, 1184 (2000).
    [CrossRef]
  5. J. Renet al., “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys. 97, 104304 (2005).
    [CrossRef]
  6. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7, 56 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=oe-7-2-56.
    [CrossRef] [PubMed]
  7. H.C. Leet al., “Temperature measurements during laser ablation of Si into He, Ar and O2,” Appl. Surf. Sci. 96–98, 164 (1996).
    [CrossRef]
  8. J. Renet al., “Laser ablation of silicon in water with nanosecond and femtosecond pulses,” Opt. Lett. 30, 1740 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-13-1740
    [CrossRef] [PubMed]
  9. J. S. Yahnget al., “Nonlinear enhancement of femtosecond laser ablation efficiency by hybridization with nanosecond laser,” Opt. Express 14, 9544 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9544
    [CrossRef] [PubMed]
  10. W.J. Wanget al., “Controllable periodic structure on silicon wafer by CO2 laser irradiation,” Appl. Surf. Sci. 186, 594 (2002).
    [CrossRef]
  11. D.Q. Yanget al., “The early stages of silicon surface damage induced by pulsed CO2 laser radiation: an AFM study,” Appl. Surf. Sci. 222, 365 (2004).
    [CrossRef]
  12. C.K. Chunget al., “Silicon micromachining by CO2 laser,” IEEE Conference of Nano/Micro Engineered and Molecular Systems (Nanotechnology Council, Zhuhai, China, 2006), pp. 1445–1448.
  13. G. Koren, “Continuous wave laser assisted chemical material removal from Mo, W, and Si at faint red hot temperatures (700–800 °C),” Appl. Phys. Lett. 47, 1012 (1985).
    [CrossRef]
  14. F.V. Bunkinet al., “Si etching affected by IR laser irradiation,” Appl. Phys. A 37, 117 (1985).
    [CrossRef]
  15. S.M. Sze, VLSI Technology, 2nd ed., (McGraw-Hill, New York, USA, 1988), p. 657 & Chap. 3.
  16. S.M. Sze, Physics of semiconductor devices, 2nd ed., (John Wiley & Sons, USA, 1981) Chap. 1.
  17. W. Schroteret al., Handbook of semiconductor technology, vol. 1, Jackson KA and Schroter W, ed. (WILEY-VCH, Weinheim, 2000), Chap. 10.
  18. W.D. Callister Jr., Fundamentals of materials science and engineering 2nd ed., (John Wiley & Sons, NJ, 2005) Chap 19.
  19. G. Chen, Nanoscale energy transport and conversion, (Oxford, NY, USA, 2005) Chap. 4.

2006 (1)

2005 (2)

2004 (2)

C.K. Chung, “Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system”, J. Micromech. Microeng. 14, 656 (2004)
[CrossRef]

D.Q. Yanget al., “The early stages of silicon surface damage induced by pulsed CO2 laser radiation: an AFM study,” Appl. Surf. Sci. 222, 365 (2004).
[CrossRef]

2003 (1)

M.A. Gosalvez and R.M. Nieminen, “Surface morphology during anisotropic wet chemical etching of crystalline silicon,” New J. Phys. 5, 100 (2003).
[CrossRef]

2002 (1)

W.J. Wanget al., “Controllable periodic structure on silicon wafer by CO2 laser irradiation,” Appl. Surf. Sci. 186, 594 (2002).
[CrossRef]

2000 (2)

1996 (1)

H.C. Leet al., “Temperature measurements during laser ablation of Si into He, Ar and O2,” Appl. Surf. Sci. 96–98, 164 (1996).
[CrossRef]

1991 (1)

Y Xiaet al., “Laser ablation of Si, Ge, ZrO, and Cu in air,” J. Phys. D: Appl. Phys. 24, 1933 (1991).
[CrossRef]

1985 (2)

G. Koren, “Continuous wave laser assisted chemical material removal from Mo, W, and Si at faint red hot temperatures (700–800 °C),” Appl. Phys. Lett. 47, 1012 (1985).
[CrossRef]

F.V. Bunkinet al., “Si etching affected by IR laser irradiation,” Appl. Phys. A 37, 117 (1985).
[CrossRef]

Bunkin, F.V.

F.V. Bunkinet al., “Si etching affected by IR laser irradiation,” Appl. Phys. A 37, 117 (1985).
[CrossRef]

Callister, W.D.

W.D. Callister Jr., Fundamentals of materials science and engineering 2nd ed., (John Wiley & Sons, NJ, 2005) Chap 19.

Chen, G.

G. Chen, Nanoscale energy transport and conversion, (Oxford, NY, USA, 2005) Chap. 4.

Chung, C.K.

C.K. Chung, “Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system”, J. Micromech. Microeng. 14, 656 (2004)
[CrossRef]

C.K. Chunget al., “Silicon micromachining by CO2 laser,” IEEE Conference of Nano/Micro Engineered and Molecular Systems (Nanotechnology Council, Zhuhai, China, 2006), pp. 1445–1448.

Gosalvez, M.A.

M.A. Gosalvez and R.M. Nieminen, “Surface morphology during anisotropic wet chemical etching of crystalline silicon,” New J. Phys. 5, 100 (2003).
[CrossRef]

Gower, M. C.

Han, G.

G. Han and P.T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88, 1184 (2000).
[CrossRef]

Koren, G.

G. Koren, “Continuous wave laser assisted chemical material removal from Mo, W, and Si at faint red hot temperatures (700–800 °C),” Appl. Phys. Lett. 47, 1012 (1985).
[CrossRef]

Le, H.C.

H.C. Leet al., “Temperature measurements during laser ablation of Si into He, Ar and O2,” Appl. Surf. Sci. 96–98, 164 (1996).
[CrossRef]

Murray, P.T.

G. Han and P.T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88, 1184 (2000).
[CrossRef]

Nieminen, R.M.

M.A. Gosalvez and R.M. Nieminen, “Surface morphology during anisotropic wet chemical etching of crystalline silicon,” New J. Phys. 5, 100 (2003).
[CrossRef]

Ren, J.

Schroter, W.

W. Schroteret al., Handbook of semiconductor technology, vol. 1, Jackson KA and Schroter W, ed. (WILEY-VCH, Weinheim, 2000), Chap. 10.

Sze, S.M.

S.M. Sze, VLSI Technology, 2nd ed., (McGraw-Hill, New York, USA, 1988), p. 657 & Chap. 3.

S.M. Sze, Physics of semiconductor devices, 2nd ed., (John Wiley & Sons, USA, 1981) Chap. 1.

Wang, W.J.

W.J. Wanget al., “Controllable periodic structure on silicon wafer by CO2 laser irradiation,” Appl. Surf. Sci. 186, 594 (2002).
[CrossRef]

Xia, Y

Y Xiaet al., “Laser ablation of Si, Ge, ZrO, and Cu in air,” J. Phys. D: Appl. Phys. 24, 1933 (1991).
[CrossRef]

Yahng, J. S.

Yang, D.Q.

D.Q. Yanget al., “The early stages of silicon surface damage induced by pulsed CO2 laser radiation: an AFM study,” Appl. Surf. Sci. 222, 365 (2004).
[CrossRef]

Appl. Phys. A (1)

F.V. Bunkinet al., “Si etching affected by IR laser irradiation,” Appl. Phys. A 37, 117 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

G. Koren, “Continuous wave laser assisted chemical material removal from Mo, W, and Si at faint red hot temperatures (700–800 °C),” Appl. Phys. Lett. 47, 1012 (1985).
[CrossRef]

Appl. Surf. Sci. (3)

W.J. Wanget al., “Controllable periodic structure on silicon wafer by CO2 laser irradiation,” Appl. Surf. Sci. 186, 594 (2002).
[CrossRef]

D.Q. Yanget al., “The early stages of silicon surface damage induced by pulsed CO2 laser radiation: an AFM study,” Appl. Surf. Sci. 222, 365 (2004).
[CrossRef]

H.C. Leet al., “Temperature measurements during laser ablation of Si into He, Ar and O2,” Appl. Surf. Sci. 96–98, 164 (1996).
[CrossRef]

J. Appl. Phys. (2)

G. Han and P.T. Murray, “Laser-plasma interactions in 532 nm ablation of Si,” J. Appl. Phys. 88, 1184 (2000).
[CrossRef]

J. Renet al., “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining,” J. Appl. Phys. 97, 104304 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

C.K. Chung, “Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system”, J. Micromech. Microeng. 14, 656 (2004)
[CrossRef]

J. Phys. D: Appl. Phys. (1)

Y Xiaet al., “Laser ablation of Si, Ge, ZrO, and Cu in air,” J. Phys. D: Appl. Phys. 24, 1933 (1991).
[CrossRef]

New J. Phys. (1)

M.A. Gosalvez and R.M. Nieminen, “Surface morphology during anisotropic wet chemical etching of crystalline silicon,” New J. Phys. 5, 100 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (6)

C.K. Chunget al., “Silicon micromachining by CO2 laser,” IEEE Conference of Nano/Micro Engineered and Molecular Systems (Nanotechnology Council, Zhuhai, China, 2006), pp. 1445–1448.

S.M. Sze, VLSI Technology, 2nd ed., (McGraw-Hill, New York, USA, 1988), p. 657 & Chap. 3.

S.M. Sze, Physics of semiconductor devices, 2nd ed., (John Wiley & Sons, USA, 1981) Chap. 1.

W. Schroteret al., Handbook of semiconductor technology, vol. 1, Jackson KA and Schroter W, ed. (WILEY-VCH, Weinheim, 2000), Chap. 10.

W.D. Callister Jr., Fundamentals of materials science and engineering 2nd ed., (John Wiley & Sons, NJ, 2005) Chap 19.

G. Chen, Nanoscale energy transport and conversion, (Oxford, NY, USA, 2005) Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The schematic diagram of glass assisted CO2 laser processing setup

Fig. 2.
Fig. 2.

The optical micrograph of: (a) Si on a glass for 10- 80 passes with six evident etching lines. The representative cross-sectional images of Si trenches at: (b) 10 and (c) 80 passes. And (d) the etching depth as a function of laser passes.

Fig. 3.
Fig. 3.

(a) The optical micrograph of the etched circular Si pattern by GACLAP for 20- 120 passes from right to left and (b) The diameter of the blind holes as a function of passes in the laser power of 15-27 W at a constant 5.7 mm/s speed.

Fig. 4.
Fig. 4.

The schematic diagram of the proposed model for GACLAP mechanism.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E g ( T ) = E g ( 0 ) α T 2 T + β

Metrics