Abstract

Inhomogeneities in the refractive index induced by temperature fluctuations in turbulent flows have the effect of scattering light in near-forward angles. We have developed a method that extracts the rate of Temperature Variance Dissipation (TVD) and its spectrum from the properties of light scattering and have built an instrument - Optical Turbulence Sensor (OTS) - that implements the method. OTS uses a linear wavefront sensing Hartmann array and allows for nearly instantaneous measurements of temperature variance in turbulent flows. The instrument has been tested in an situ experiment carried out from a drifting vessel at a site off the coast of Newport, Oregon. Here we compare the temperature variance measured by OTS and its spectra with both theoretical predictions and with spectra obtained from a fast thermistor sensor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Ozmidov, "On the turbulent exchange in a stably stratified ocean," Izv., Acad. Sci. USSR, Atmos. Oceanic Phys. 1, 493-497 (1965).
  2. W. H. Wells, "Theory of small-angle scattering," (Advisory Group for Aerospace Research and Development, NATO, 92 Neuilly-Sur-Seine, France, 1973).
  3. D. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. V. Zaneveld, "Comparison of nearforward scattering on turbulence and particles," Appl. Opt. 37, 4669-4677 (1998).
    [CrossRef]
  4. D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, and R. C. Truman, "Light scattering on oceanic turbulence," Appl. Opt. 43, 5662-5676 (2004).
    [CrossRef] [PubMed]
  5. D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, C. R. Truman, and J. R. V. Zaneveld, "Near-forward light scattering on oceaqnic turbulence and particulates: an experimental comparison," SPIE, Ocean Optics XIV (1998).
  6. R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
    [CrossRef]
  7. M. C. Gregg, "Uncertainties and limitations in measuring ∑ and χ." J. Atmos. Oceanic Technol. 16, 1484-1490 (1998).
  8. V. I. Tatarski, Wave Propagation in Turbulent Media (McGraw-Hill, New York, 1961).
  9. V. I. Tatarski, The effects of the turbulent atmosphere on the wave propagation (Israel program for Scientific Translation, Jerusalem, 1971).
  10. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (The MIT press, 1981).
  11. D. Bogucki, A. Domaradzki, and P. K. Yeung, "Direct numerical simulations of passive scalars with Pr> 1 advected by turbulent flow," J. Fluid Mech. 343, 111-130 (1997).
    [CrossRef]
  12. D. Bogucki and J. Domaradzki, "Numerical study of light scattering by a boundary-layer flow," Appl. Opt. 44, 5286-5291 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

1998 (2)

D. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. V. Zaneveld, "Comparison of nearforward scattering on turbulence and particles," Appl. Opt. 37, 4669-4677 (1998).
[CrossRef]

M. C. Gregg, "Uncertainties and limitations in measuring ∑ and χ." J. Atmos. Oceanic Technol. 16, 1484-1490 (1998).

1997 (2)

D. Bogucki, A. Domaradzki, and P. K. Yeung, "Direct numerical simulations of passive scalars with Pr> 1 advected by turbulent flow," J. Fluid Mech. 343, 111-130 (1997).
[CrossRef]

R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
[CrossRef]

1965 (1)

R. V. Ozmidov, "On the turbulent exchange in a stably stratified ocean," Izv., Acad. Sci. USSR, Atmos. Oceanic Phys. 1, 493-497 (1965).

Bogucki, D.

Bogucki, D. J.

Box, J.

R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
[CrossRef]

Domaradzki, A.

D. Bogucki, A. Domaradzki, and P. K. Yeung, "Direct numerical simulations of passive scalars with Pr> 1 advected by turbulent flow," J. Fluid Mech. 343, 111-130 (1997).
[CrossRef]

Domaradzki, J.

Domaradzki, J. A.

Ecke, R. E.

Gregg, M. C.

M. C. Gregg, "Uncertainties and limitations in measuring ∑ and χ." J. Atmos. Oceanic Technol. 16, 1484-1490 (1998).

Huang, D.

R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
[CrossRef]

Lueck, R. G.

R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
[CrossRef]

Newman, D.

R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
[CrossRef]

Ozmidov, R. V.

R. V. Ozmidov, "On the turbulent exchange in a stably stratified ocean," Izv., Acad. Sci. USSR, Atmos. Oceanic Phys. 1, 493-497 (1965).

Stramski, D.

Truman, R. C.

Yeung, P. K.

D. Bogucki, A. Domaradzki, and P. K. Yeung, "Direct numerical simulations of passive scalars with Pr> 1 advected by turbulent flow," J. Fluid Mech. 343, 111-130 (1997).
[CrossRef]

Zaneveld, J. R. V.

Appl. Opt. (3)

Atmos. Oceanic Phys. (1)

R. V. Ozmidov, "On the turbulent exchange in a stably stratified ocean," Izv., Acad. Sci. USSR, Atmos. Oceanic Phys. 1, 493-497 (1965).

J. Atmos. Oceanic Technol. (2)

R. G. Lueck, D. Huang, D. Newman, and J. Box, "Turbulence measurement with a moored instrument," J. Atmos. Oceanic Technol. 14, 143-161 (1997).
[CrossRef]

M. C. Gregg, "Uncertainties and limitations in measuring ∑ and χ." J. Atmos. Oceanic Technol. 16, 1484-1490 (1998).

J. Fluid Mech. (1)

D. Bogucki, A. Domaradzki, and P. K. Yeung, "Direct numerical simulations of passive scalars with Pr> 1 advected by turbulent flow," J. Fluid Mech. 343, 111-130 (1997).
[CrossRef]

Other (5)

V. I. Tatarski, Wave Propagation in Turbulent Media (McGraw-Hill, New York, 1961).

V. I. Tatarski, The effects of the turbulent atmosphere on the wave propagation (Israel program for Scientific Translation, Jerusalem, 1971).

A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (The MIT press, 1981).

W. H. Wells, "Theory of small-angle scattering," (Advisory Group for Aerospace Research and Development, NATO, 92 Neuilly-Sur-Seine, France, 1973).

D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, C. R. Truman, and J. R. V. Zaneveld, "Near-forward light scattering on oceaqnic turbulence and particulates: an experimental comparison," SPIE, Ocean Optics XIV (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical Turbulence Sensor - (A) Photograph of the developed and sea tested sensor. (B) Schematic representation of the various OTS parts. The light source is on the left hand side. The right hand side contains the receiving unit. Examples of displaced spots (only 4 of 110 available in OTS) produced by lenslets are presented on the right hand side of Figure (B). The light source and the acquisition board with CCD are enclosed in a hermetic enclosure.

Fig. 2.
Fig. 2.

Example of temperature spectrum ET (k) - panel (A) and dissipation spectrum k 2 ET (k) - panel (B) measured by OTS (2 sec ensemble), compared to theoretical prediction for turbulent flow [11].

Fig. 3.
Fig. 3.

The 2 hour time series of ? measured by OTS and the thermistor at each measurement depth.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y ) = A 0 ( x , y ) exp ( 2 πi λ 0 L n ( x , y , z′ ) dz′ ) ,
N = [ Γ x , Γ y , 1 ] ,
α ( x , y ) = { ( Γ x ) 2 + ( Γ x ) 2 } 1 / 2 ,
B ( ρ ) = D α ( ρ′ ) α ( ρ ρ′ ) dρ′
M 2 0 k J 0 ( ) E T ( k ) dk = 1 ρ B ( ρ ) ,
E T ( k ) = 1 M 2 0 J 0 ( ) B ( ρ ) .
χ = 2 κ 0 E T ( k ) k 2 dk .

Metrics