Abstract

A packaged liquid lens driven by the dielectric force was demonstrated. The liquid lens consisted of a low dielectric constant droplet and a high dielectric constant sealing liquid. The two non-conductive liquids were sealed in a chamber under the condition of iso-density. Focal length of a liquid lens with an aperture of 3mm changed from 34mm to 12mm in the range of 0-200V. Hysteresis was observed in the liquid lens, with a maximum value measured of 12.5° at 120 volts in terms of droplet’s contact angle. The focal spot size measured approximately 80μm. Rise and fall times were 650ms and 300ms, respectively. The lens consumed 1mW of power when applying a 200 volt, 1 kHz signal. The longitudinal and transverse spherical aberrations were estimated to be nearly invariant when the focal length exceeded 20mm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
    [CrossRef]
  2. H. Ren, Y-H Fan, and S-T Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004).
    [CrossRef] [PubMed]
  3. A. Y. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Technol. 68, 682–686 (2001).
    [CrossRef]
  4. H. S. Ji, J. H. Kim, and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28, 1147–1149 (2003).
    [CrossRef] [PubMed]
  5. C-C Cheng, C. A. Chang, C-H Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A: Pure Appl. Opt. 8, S365–S369 (2006).
    [CrossRef]
  6. N. Chronis, G. L Liu, K-H Jeong, and L P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
    [CrossRef] [PubMed]
  7. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993).
    [CrossRef] [PubMed]
  8. W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643–2645 (2005).
    [CrossRef]
  9. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage - An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  10. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  11. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
    [CrossRef]
  12. A. Quinn, R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowetting,” J. Phys. Chem. B 107, 1163–1169 (2003).
    [CrossRef]
  13. F. Mugele and J-C Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705–R774 (2005).
    [CrossRef]
  14. C-C Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid lens,” Opt. Express 14, 4101–4106 (2006).
    [CrossRef] [PubMed]
  15. J. -Y. Huang, Y. S. Lu, and J. A. Yeh, “Self-assembled high NA microlens arrays using global dielectricphoretic energy wells,” Opt. Express 14, 10779–10784 (2006).
    [CrossRef] [PubMed]

2006 (3)

2005 (2)

F. Mugele and J-C Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705–R774 (2005).
[CrossRef]

W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643–2645 (2005).
[CrossRef]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

H. Ren, Y-H Fan, and S-T Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608–1610 (2004).
[CrossRef] [PubMed]

2003 (4)

2001 (1)

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage - An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1993 (1)

1992 (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Baret, J-C

F. Mugele and J-C Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage - An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Chang, C. A.

C-C Cheng, C. A. Chang, C-H Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A: Pure Appl. Opt. 8, S365–S369 (2006).
[CrossRef]

C-C Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid lens,” Opt. Express 14, 4101–4106 (2006).
[CrossRef] [PubMed]

Cheng, C-C

C-C Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid lens,” Opt. Express 14, 4101–4106 (2006).
[CrossRef] [PubMed]

C-C Cheng, C. A. Chang, C-H Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A: Pure Appl. Opt. 8, S365–S369 (2006).
[CrossRef]

Chronis, N.

Fan, Y-H

Fang, J.

W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643–2645 (2005).
[CrossRef]

Gvozdarev, A. Y.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Huang, J. -Y.

Jeong, K-H

Ji, H. S.

Kim, J. H.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kumar, S.

Lee, L P.

Liu, C-H

C-C Cheng, C. A. Chang, C-H Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A: Pure Appl. Opt. 8, S365–S369 (2006).
[CrossRef]

Liu, G. L

Lu, Y. S.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Masuda, S.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Morita, S.

Mugele, F.

F. Mugele and J-C Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Nevskaya, G. E.

Nose, T.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage - An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Quinn, A.

A. Quinn, R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowetting,” J. Phys. Chem. B 107, 1163–1169 (2003).
[CrossRef]

Ralston, J.

A. Quinn, R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowetting,” J. Phys. Chem. B 107, 1163–1169 (2003).
[CrossRef]

Ren, H.

Sato, S.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Sedev, R.

A. Quinn, R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowetting,” J. Phys. Chem. B 107, 1163–1169 (2003).
[CrossRef]

Sugiura, N.

Varahramyan, K.

W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643–2645 (2005).
[CrossRef]

Wang, W.

W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643–2645 (2005).
[CrossRef]

Wu, S-T

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Yeh, J. A.

Yudin, I. B.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage - An application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643–2645 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

C-C Cheng, C. A. Chang, C-H Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” J. Opt. A: Pure Appl. Opt. 8, S365–S369 (2006).
[CrossRef]

J. Opt. Technol. (1)

J. Phys. Chem. B (1)

A. Quinn, R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowetting,” J. Phys. Chem. B 107, 1163–1169 (2003).
[CrossRef]

J. Phys.: Condens. Matter (1)

F. Mugele and J-C Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Supplementary Material (1)

» Media 1: MPG (5404 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Illustration of a dielectric liquid lens. The droplet shrunk to a new state (dashed line) due to the dielectric force. (b). The captured images of an actuated liquid lens at the rest state (left) and at 75 volts (right). (c). (5.3MB) A movie of focal tuning using the dielectric liquid lens. The object was a doll of the “Snoopy ” dog placed a distance of 50mm from the lens. [Media 1]

Fig. 2.
Fig. 2.

(a). The measured receding contact angles and advancing contact angles of the droplet in a liquid lens versus the applied voltages. The insets in (a) show the droplets actuated at various voltages. Left: the droplet was at the rest state. Right: the droplet was actuated at 200V. (b) Conic constants of the droplet varied with voltages.

Fig. 3.
Fig. 3.

The focal lengths of the dielectric liquid lens versus applied voltages. Black triangles and red diamonds indicate the measurement results and paraxial approximation, respectively.

Fig. 4.
Fig. 4.

The focal spot size of the dielectric liquid lens determined using a laser with a wavelength of 532nm at various focal lengths. Both the measured results (black diamond) and the simulated results (red square) indicate a nearly constant focal spot size. The two insets on this diagram show intensity distribution of the laser spot at focal lengths of 12mm and 34mm.

Fig. 5.
Fig. 5.

Spherical aberration varies with focal length. The solid lines are the longitudinal spherical aberration and the dash lines are the transverse spherical aberration. The radiuses of aperture stop are 2.5mm, 2.0mm, 1.5mm and 1.0mm for red, green, blue and black lines, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = ε 0 2 [ ( ε 1 ε 2 ) E 2 ]

Metrics