Abstract

Line-field spectral domain optical coherence tomography (LF-SDOCT) has been developed for very high-speed three-dimensional (3D) retinal imaging. By this technique, the A-line rate significantly improved to 823,200 A-lines/s for single frame imaging and 51,500 A-lines/s for continues frame imaging. The frame rate at continues frame imaging is 201 fps. This 3D acquisition speed is more than two fold higher acquisition speed than the standard flying spot SD-OCT. In this paper, the integration time of the camera was optimized for the in vivo retinal measurement and the degradation of the lateral resolution due to the ocular aberrations was suppressed by introducing the pupil stop. Owing to an optimal integration time, the motion artifact can be significantly suppressed. Also a pupil stop was employed in order to enhance the contrast of the OCT image for the effect of ocular aberrations. The in vivo 3D retinal imaging with 256 cross-sectional images (256 A-lines/image) was successfully performed in 1.3 seconds, corresponding to 0.8 volume/s. The maximum on-axis system sensitivity was measured to be 89.4 dB at a depth of 112 μm with an axial resolution of 7.4 μm in tissue. It is shown that LF-SDOCT might have a sensitivity advantage in comparison to the flying spot SD-OCT in the ultra high-speed acquisition mode.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. G. Hausler and M. W. Lindner, ““Coherence radar”and“spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  5. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
    [CrossRef] [PubMed]
  6. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747 (2003).
    [CrossRef] [PubMed]
  7. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
    [CrossRef] [PubMed]
  8. M. Mujat, R. Chan, B. Cense, B. Park, Chulmin Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13, 9480–9491 (2005).
    [CrossRef] [PubMed]
  9. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [CrossRef] [PubMed]
  10. S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, “Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography,” Opt. Express 14, 3368–3376 (2006).
    [CrossRef] [PubMed]
  11. S. Bourquin, P. Seitz, and R. P. Salathe, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
    [CrossRef]
  12. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002).
    [PubMed]
  13. M. Lebec, L. Blanchot, H. Saint-Jalmes, E. Beaurepaire, and A. C. Boccara, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  14. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD camera,” Opt. Lett. 28, 816–818 (2003).
    [CrossRef] [PubMed]
  15. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
    [CrossRef] [PubMed]
  16. I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23, 1797–1799 (1998).
    [CrossRef]
  17. Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376–380 (2006).
    [CrossRef]
  18. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,”Opt. Express 14, 5201–5209 (2006).
    [CrossRef] [PubMed]
  19. A. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24, 519–521 (1999).
    [CrossRef]
  20. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
    [CrossRef] [PubMed]
  21. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005), http://www.opticsinfobase.org/abstract.cfm?id=84362.
    [CrossRef] [PubMed]
  22. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferom-etry,” Opt. Express 13, 695–701 (2005).
    [CrossRef] [PubMed]
  23. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11, 014014–014020 (2006).
    [CrossRef] [PubMed]
  24. American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  25. M. Takeda, H. Ina, and S. Kobayashi,“Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,”J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  26. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai,“Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,”Opt. Express 13, 10652–10664 (2005).
    [CrossRef] [PubMed]
  27. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
    [CrossRef] [PubMed]
  28. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80320.
    [CrossRef] [PubMed]
  29. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,”Opt. Express 12, 5614–5624 (2004).
    [CrossRef] [PubMed]
  30. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
    [CrossRef] [PubMed]
  31. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef] [PubMed]
  32. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
    [CrossRef] [PubMed]
  33. E. J. Fernandez and W. Drexler, “Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography,”Opt. Express 13, 8184–8197 (2005).
    [CrossRef] [PubMed]
  34. E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213
    [CrossRef] [PubMed]
  35. W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. A 20, 2010–2015 (2003).
    [CrossRef]
  36. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 m wavelength,” Opt. Express 11, 35983604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
    [CrossRef]
  37. D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
    [CrossRef] [PubMed]

2006 (8)

Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376–380 (2006).
[CrossRef]

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11, 014014–014020 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, “Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography,” Opt. Express 14, 3368–3376 (2006).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,”Opt. Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
[CrossRef] [PubMed]

2005 (9)

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferom-etry,” Opt. Express 13, 695–701 (2005).
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005), http://www.opticsinfobase.org/abstract.cfm?id=84362.
[CrossRef] [PubMed]

E. J. Fernandez and W. Drexler, “Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography,”Opt. Express 13, 8184–8197 (2005).
[CrossRef] [PubMed]

Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, Chulmin Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13, 9480–9491 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai,“Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,”Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

2004 (5)

2003 (6)

2002 (1)

2001 (1)

1999 (1)

1998 (3)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1982 (1)

Ahnelt, P.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
[CrossRef] [PubMed]

Akiba, M.

Akkin, T.

Alfano, R. R.

Aoki, G.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11, 014014–014020 (2006).
[CrossRef] [PubMed]

Artal, P.

Bajraszewski, T.

Beaurepaire, E.

Bigelow, T. E.

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

Blanchot, L.

Boccara, A. C.

Bouma, B.

Bouma, B. E.

Bourquin, S.

Bower, B.

Cense, B.

Chan, K. P.

Chan, K. -P.

Chan, R.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Choi, S.

Chong, C.

de Boer, J.

de Boer, J. F.

Donnelly, W. J.

Drexler, W.

Ducros, M.

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Endo, T.

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11, 014014–014020 (2006).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferom-etry,” Opt. Express 13, 695–701 (2005).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

Ferguson, R. D.

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

Fernandez, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gilerson, A.

Grajciar, B.

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hammer, D. X.

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

Hausler, G.

G. Hausler and M. W. Lindner, ““Coherence radar”and“spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C.

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Iftimia, N. V.

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

Ina, H.

Itoh, M.

Izatt, J.

Jiao, S.

Jones, S.

Jonnal, R.

Joo, Chulmin

Karamata, B.

Knighton, R. W.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Kobayashi, S.

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747 (2003).
[CrossRef] [PubMed]

Lasser, T.

Laubscher, M.

Laut, S.

Le, T.

Lebec, M.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Hausler and M. W. Lindner, ““Coherence radar”and“spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Madjarova, V. D.

Makita, S.

Miller, D.

Morosawa, A.

Mujat, M.

Nassif, N.

Oh, W. Y.

Olivier, S.

Park, B.

Park, B. H.

Pierce, M.

Pierce, M. C.

Pircher, M.

Povazay, B.

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213
[CrossRef] [PubMed]

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, “Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography,” Opt. Express 14, 3368–3376 (2006).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rha, J.

Richards-Kortum, R.

Roorda, A.

Saint-Jalmes, H.

Sakai, T.

Salathe, R.

Salathe, R. P.

Sato, M.

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,”Opt. Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376–380 (2006).
[CrossRef]

Sattmann, H.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seitz, P.

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tanno, N.

Targowski, P.

Tearney, G.

Tearney, G. J.

Unterhuber, A.

Watanabe, Y.

Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376–380 (2006).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,”Opt. Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Webb, R. H.

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

Werner, J.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747 (2003).
[CrossRef] [PubMed]

Wu, C.

Yamada, K.

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,”Opt. Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376–380 (2006).
[CrossRef]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yelin, R.

Yun, S.

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 m wavelength,” Opt. Express 11, 35983604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef]

Yun, S. H.

Zawadzki,

Zeylikovich, I.

Zhang, Y.

Zhao, M.

Zuluaga, A.

J. Biomed. Opt. (3)

G. Hausler and M. W. Lindner, ““Coherence radar”and“spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11, 014014–014020 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, T. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Ophthalmology (1)

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography,” Ophthalmology 112, 1734–1746 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376–380 (2006).
[CrossRef]

Opt. Express (19)

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002).
[PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 m wavelength,” Opt. Express 11, 35983604 (2003), http://www.opticsinfobase.org/abstract.cfm?id=78225.
[CrossRef]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004), http://www.opticsinfobase.org/abstract.cfm?id=80320.
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,”Opt. Express 12, 5614–5624 (2004).
[CrossRef] [PubMed]

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferom-etry,” Opt. Express 13, 695–701 (2005).
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005), http://www.opticsinfobase.org/abstract.cfm?id=84362.
[CrossRef] [PubMed]

E. J. Fernandez and W. Drexler, “Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography,”Opt. Express 13, 8184–8197 (2005).
[CrossRef] [PubMed]

Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, Chulmin Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13, 9480–9491 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai,“Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,”Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, “Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography,” Opt. Express 14, 3368–3376 (2006).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,”Opt. Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
[CrossRef] [PubMed]

Opt. Lett. (8)

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD camera,” Opt. Lett. 28, 816–818 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745–1747 (2003).
[CrossRef] [PubMed]

S. Bourquin, P. Seitz, and R. P. Salathe, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
[CrossRef]

M. Lebec, L. Blanchot, H. Saint-Jalmes, E. Beaurepaire, and A. C. Boccara, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23, 1797–1799 (1998).
[CrossRef]

A. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24, 519–521 (1999).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography, Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (1)

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45, 3432–3444 (2005).
[CrossRef] [PubMed]

Other (1)

American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).

Supplementary Material (4)

» Media 1: AVI (8182 KB)     
» Media 2: AVI (2160 KB)     
» Media 3: AVI (2270 KB)     
» Media 4: AVI (12323 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Optical scheme of LF-SDOCT. SLD, superluminescent diode; L, Lens (L1, L2, L3, L4, and L5 are 60, 60, 100, 150, and 60 mm.); CL, cylindrical lens (CL1 and CL2 are 100 and 60 mm); Ch1 and Ch2, optical chopper; ND, nutral density filter.

Fig. 2.
Fig. 2.

Horizontal (a) and vertical (b) perspectives of the optical system. The two L1s and 78D lenses are identical. Cylindrical lens (L1) produces the line illumination on the sample. The sample plane is vertically conjugated with the detection plane.

Fig. 3.
Fig. 3.

Schematic representation of the synchronization time chart of LF-SDOCT. Both choppers are open, i.e., the sample is illuminated only during the integration time of the camera.

Fig. 4.
Fig. 4.

Plot of the sensitivity with and without axial motion versus the integration time of the camera. Although the sensitivity without axial motion monotonously increases with the integration time, the maximum sensitivity with axial motion is obtained at an integration time of 311 μs.

Fig. 5.
Fig. 5.

Image comparison between the integration times of (a) 1 ms and (b) 311 μs. The fringe washout affects the entire cross-sectional image. The shown representative image is 29th one in 256 successively captured cross-sectional image. A movie of the time sequence of the images are available for the comparison between with integration times of 1 ms and 311 μs (2.1 MB movie). Also, a version of 8.0 MB is available.

Fig. 6.
Fig. 6.

Evaluation function of each frame for the integration times of (a) 1 ms and (b) 311 μs. The result obtained for 1ms shows a lot of missing frames due to the motion artifact in quantitative comparison to that for 311 μs.

Fig. 7.
Fig. 7.

Qualitative image comparison between the (a) absence and (b) presence of the pupil stop.

Fig. 8.
Fig. 8.

Time sequence of the cross-sectional image for the macula of an in vivo human healthy volunteer (2.2 MB movie). Also, the version of 12.0 MB is available.

Fig. 9.
Fig. 9.

Volume rendering image of the retina. The original data set is same as Fig. 8.

Fig. 10.
Fig. 10.

Lateral position dependence of the sensitivity. Theoretical distribution of the sensitivity calculated from the Gaussian intensity profile of the line illumination on the sample (blue line). Experimental distribution of the sensitivity obtained using an achromatic lens and a mirror (red line).

Fig. 11.
Fig. 11.

Change in the sensitivity property with the increase in the A-line rate. The sensitivity for the flying spot SD-OCT that attains a 100 % duty cycle (green line). LF-SDOCT has a constant sensitivity until the system attains a 100 % duty cycle (red line). The flying spot SD-OCT used in this simulation is standard one which has the center wavelength of 840 nm, the probing power of 733 μW , the splitting ratio from the sample arm to the spectrometer of 0.8, and the spectrometer efficiency of 0.3. The degraded sensitivities of LF-SDOCT at lateral 50 and 100 pixels are also plotted.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( k ) = S 0 ( k ) sin 2 ( k v z τ ) ( k v z τ ) 2 ,
E = z , y ( I ( z , y ) I ( z , y ) ) log 2 ( I ( z , y ) I ( z , y ) ) ,

Metrics