Abstract

We report on efficient laser operation of high quality crystalline Yb3+:Lu2O3 in thin disk configuration. Using doping concentrations between 1 at.% to 3 at.% and disk thicknesses between 0.08mm and 0.45mm the optimum crystal parameters have been determined. Pumped at 976 nm the laser operates at 1034 nm and 1080 nm. With a 0.25mm thick 3 at.% Yb:Lu2O3 disk 32.6W of output power at 45.3W incident pump power with a slope efficiency of 80% and a resulting optical-to-optical efficiency of 72% have been realized. These are the highest values in terms of slope efficiency as well as optical-to-optical efficiency for an Yb-doped thin disk laser reported so far. Using an 1mm birefringent filter continuous tuning from 987 nm to 1127 nm with more than 10Wof output power over a tuning range of 90 nm has been achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
    [CrossRef]
  2. A. Giesen, "High-Power Thin-Disk Lasers," presented at the Advanced Solid-State Photonics, Vancouver, Canada, 28-31 Jan. 2007.
  3. M. Larionov, J. Gao, S. Erhard, A. Giesen, K. Contag, V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, J. Aus der Au, G. J. Sp¨uhler, R. Paschotta, U. Keller, A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, "Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides and potassium tungstates," OSA TOPS Vol. 50, Advanced Solid-State Lasers, pp. 625 (2001).
  4. R. Peters, C. Kränkel, K. Petermann, and G. Huber, "Thin-Disk Laser Operation of Yb3+-Doped NaGd(WO4)2," presented at the Advanced Solid-State Photonics, Vancouver, Canada, 28-31 Jan. 2007.
  5. C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
    [CrossRef]
  6. C. Kränkel, R. Peters, K. Petermann, and G. Huber, "High Power Operation of Yb:LuVO4 and Yb:YVO4 Crystals in the Thin-Disk Laser Setup," presented at the Advanced Solid-State Photonics, Vancouver, Canada, 28-31 Jan. 2007.
  7. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
    [CrossRef]
  8. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
    [CrossRef]
  9. K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
    [CrossRef]
  10. U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125-3130 (2004).
    [CrossRef] [PubMed]
  11. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
    [CrossRef] [PubMed]
  12. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
    [CrossRef]
  13. J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
    [CrossRef]
  14. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
    [CrossRef]
  15. K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
    [CrossRef]
  16. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
    [CrossRef] [PubMed]
  17. A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
    [CrossRef]
  18. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
    [CrossRef] [PubMed]
  19. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
    [CrossRef]
  20. A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
    [CrossRef]
  21. K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
    [CrossRef]
  22. A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
    [CrossRef] [PubMed]
  23. A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).
  24. D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
    [CrossRef]
  25. C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
    [CrossRef]
  26. R. Peters, C. Kränkel, K. Petermann, and G. Huber, "Crystal growth by the heat exchanger method and spectroscopic characterisation of high purity Yb3+-doped Lu2O3," submitted to the 15th International Conference on Crystal Growth, Salt Lake City, USA (2007)
  27. C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
    [CrossRef]
  28. H. Kühn, S. T. Fredrich-Thornton, C. Kr¨ankel, R. Peters, and K. Petermann, "A model for the calculation of radiation trapping and description of the pinhole method," Opt. Lett.article in press (2007).
    [CrossRef]

2007

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

H. Kühn, S. T. Fredrich-Thornton, C. Kr¨ankel, R. Peters, and K. Petermann, "A model for the calculation of radiation trapping and description of the pinhole method," Opt. Lett.article in press (2007).
[CrossRef]

2006

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

2005

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

2004

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
[CrossRef] [PubMed]

U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125-3130 (2004).
[CrossRef] [PubMed]

2003

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

2002

K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
[CrossRef]

2000

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

1999

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

1994

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Akchurin, M.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

Bagayev, S.N.

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

Basun, S.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

Basun, S. A.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

Bernhagen, M.

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Bisson, J.

Bisson, J. F.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

Biswal,, S.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Braun, A.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Chan, C. C.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

Erbert, G.

Fagundes-Peters, D.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Fornasiero, L.

K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

Fredrich, S.T.

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Fredrich-Thornton, S. T.

H. Kühn, S. T. Fredrich-Thornton, C. Kr¨ankel, R. Peters, and K. Petermann, "A model for the calculation of radiation trapping and description of the pinhole method," Opt. Lett.article in press (2007).
[CrossRef]

Gainutdinov, R.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

Giesen, A.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Graf, M

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Griebner, U.

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
[CrossRef] [PubMed]

U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125-3130 (2004).
[CrossRef] [PubMed]

Hofstaetter, A.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

Hönninger, C.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Hosokawa, S.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

Huber, G.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Ivanov, S.N.

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

Johannsen, I

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Johannsen, J.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Kaminskii, A.

Kaminskii, A. A.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

Kaminskii, A.A.

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

Keller, U.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Khazanov, E.N.

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

Klopp, P.

Kong, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

Kränkel, C.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Kuch, S.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

Kühn, H.

H. Kühn, S. T. Fredrich-Thornton, C. Kr¨ankel, R. Peters, and K. Petermann, "A model for the calculation of radiation trapping and description of the pinhole method," Opt. Lett.article in press (2007).
[CrossRef]

Kutovoi, S.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

Laguta, V.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

Liu, J.

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

Lu, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Lünstedt, K.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

Martynyuk, N.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

Mix, E.

K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

Mond, M.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Morier-Genoud, F.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Moser, M.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Mourou, G. A

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Musha, M.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Nees, J.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Paschotta, R.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Petermann, K.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125-3130 (2004).
[CrossRef] [PubMed]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
[CrossRef] [PubMed]

K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

Peters, R.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

Peters, V.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125-3130 (2004).
[CrossRef] [PubMed]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
[CrossRef] [PubMed]

K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

Petrov, T.

Petrov, V.

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
[CrossRef] [PubMed]

U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125-3130 (2004).
[CrossRef] [PubMed]

Rico, M.

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

Romero, J.J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

Seeber, W.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Shirakawa, A.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Speiser, J.

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

Takaichi, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Tang, D. Y.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

Tanisho, M.

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

Taranov, A.V.

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

Tokurakawa, M.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

Uecker, R.

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Ueda, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Uematsu, T.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Witting, K.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

Yagi, H.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Yanagitani, T.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser," Opt. Express 14,12832-12838 (2006).
[CrossRef] [PubMed]

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

A. Shirakawa, K. Takaichi, H. Yagi, J. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. Petrov, and A. Kaminskii, "Diode-pumped mode-locked Yb3+:Y2O3 ceramic lasers," Opt. Express 11,2911-2916 (2003).
[CrossRef] [PubMed]

Zhang, G.

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

Appl. Phys. B

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, H. Opower, "Scalable Concept for Diode-Pumped High- Power Solid-State Lasers," Appl. Phys. B 58,365-372 (1994).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, "Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration," Appl. Phys. B 87,217-220 (2007).
[CrossRef]

C. Hönninger, R. PaschottaM . Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal,J. Nees, A. Braun, G. A . Mourou, I . Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers," Appl. Phys. B 69, pp. 3-17 (1999).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, "Continuous wave laser operation of Yb3+:YVO4," Appl. Phys. B 79,543-546 (2004).
[CrossRef]

Appl. Phys. Lett.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers," Appl. Phys. Lett. 84,317-319 (2004).
[CrossRef]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Yb3+:Sc2O3 ceramic laser," Appl. Phys. Lett. 83,1101-1103 (2003).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diodepumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser," Appl. Phys. Lett. 90,071101 (2007).
[CrossRef]

Cryst. Res. Technol.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers," Cryst. Res. Technol. 34,255-260, (1999).
[CrossRef]

Crystallography Report

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, "Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics," Crystallography Report 50,869-873 (2005).
[CrossRef]

J. Cryst. Growth

K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen,"Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135-140 (2005).
[CrossRef]

J. Lumin.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. A. Basun, "Rare-earth-doped sesquioxides," J. Lumin. 87,973-975 (2000).
[CrossRef]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, "High quantum efficiency YbAG-crystals," J. Lumin. 125,238-247 (2007).
[CrossRef]

Laser Phys.

A. Shirakawa, K. Takaichi, H. Yagi,M. Tanisho, J. F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "First mode-locked ceramic laser: Femtosecond Yb3+:Y2O3 ceramic laser," Laser Phys. 14,1375-1381 (2004).

Laser Phys. Lett.

A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S.N. Ivanov, E.N. Khazanov, A.V. Taranov, H. Yagi, and T. Yanagitani, "New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons," Laser Phys. Lett. 3,375-379 (2006).
[CrossRef]

Opt. Express

Opt. Lett

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani, "High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping," Opt. Lett 32,247-249 (2007).
[CrossRef] [PubMed]

Opt. Lett.

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett. 29,391-393 (2004).
[CrossRef] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kr¨ankel, R. Peters, and K. Petermann, "A model for the calculation of radiation trapping and description of the pinhole method," Opt. Lett.article in press (2007).
[CrossRef]

Opt. Mater.

K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments," Opt. Mater. 19,67-71 (2002).
[CrossRef]

Phys. Stat. Sol. (A)

J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm," Phys. Stat. Sol. (A) 202,R19-R21 (2005).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Lu2O3:Yb3+ ceramics a novel gain material for high-power solid-state lasers," Phys. Stat. Sol. (A) 202,R1-R3 (2005).
[CrossRef]

Other

C. Kränkel, R. Peters, K. Petermann, and G. Huber, "High Power Operation of Yb:LuVO4 and Yb:YVO4 Crystals in the Thin-Disk Laser Setup," presented at the Advanced Solid-State Photonics, Vancouver, Canada, 28-31 Jan. 2007.

A. Giesen, "High-Power Thin-Disk Lasers," presented at the Advanced Solid-State Photonics, Vancouver, Canada, 28-31 Jan. 2007.

M. Larionov, J. Gao, S. Erhard, A. Giesen, K. Contag, V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, J. Aus der Au, G. J. Sp¨uhler, R. Paschotta, U. Keller, A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, "Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides and potassium tungstates," OSA TOPS Vol. 50, Advanced Solid-State Lasers, pp. 625 (2001).

R. Peters, C. Kränkel, K. Petermann, and G. Huber, "Thin-Disk Laser Operation of Yb3+-Doped NaGd(WO4)2," presented at the Advanced Solid-State Photonics, Vancouver, Canada, 28-31 Jan. 2007.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, "Crystal growth by the heat exchanger method and spectroscopic characterisation of high purity Yb3+-doped Lu2O3," submitted to the 15th International Conference on Crystal Growth, Salt Lake City, USA (2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(Color online) Comparison of the absorption (a) and emission cross sections (b) of Yb:Lu2O3 and Yb:YAG.

Fig. 2.
Fig. 2.

(Color online) Comparison of the fluorescence lifetime of previous (a) and new high purity Yb:Lu2O3 crystals (b) grown under improved growth conditions.

Fig. 3.
Fig. 3.

(Color online) A sketch of the experimental setup; the optical resonator and the multi-pass pumping system are shown.

Fig. 4.
Fig. 4.

(Color online) Output power characteristics of an 3 at.% Yb:Lu2O3 thin disk laser under pumping with a laser diode of 45.3Wmaximum power; the output mirrors had transmissions between TOC = 0.4% and 5.7%; Inset: Typical laser emission spectrum of this sample.

Fig. 5.
Fig. 5.

(Color online) Maximum slope efficiencies of the investigated crystals vs doping level times disk thickness and comparison to the estimated efficiency determined by the pump light absorption of the disks (dashed curve)

Fig. 6.
Fig. 6.

(Color online) Tuning range for different TOC of a 0.45mm 1 at.% and a 0.25mm 3 at.% Yb:Lu2O3, realized with a birefringent filter under Brewsters angle at 32W of incident pump power

Tables (1)

Tables Icon

Table 1. Physical properties at 300K of Sc2O3, Y2O3, and Lu2O3 in comparison to YAG [8, 10, 24].

Metrics