Abstract

We report a continuous-wave self-Raman laser based on diode-pumped Nd:GdVO4 giving first-Stokes output at 1173 nm and intracavity frequency-doubled output at 586.5 nm. A maximum cw output power at 1173 nm of 2 W was obtained for diode pump powers of 22 W and a maximum cw power at 586 nm of 678 mW with 16.3 W pump power. Infrared and yellow powers were limited by thermal lensing in the gain medium and parasitic oscillations of weak Nd3+ transitions. Quasi-cw operation at 50% duty-cycle reduced the thermal load in the laser/Raman crystal, allowing cavity stability to be obtained near maximum available pump power (25.7 W) for which the maximum quasi-cw yellow output power was 1.88 W.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper
Opt. Express 16(26) 21958-21963 (2008)

Near-infrared and orange–red emission from a continuous-wave, second-Stokes self-Raman Nd:GdVO4 laser

Andrew J. Lee, Jipeng Lin, and Helen M. Pask
Opt. Lett. 35(18) 3000-3002 (2010)

Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths

Jonas Jakutis-Neto, Jipeng Lin, Niklaus Ursus Wetter, and Helen Pask
Opt. Express 20(9) 9841-9850 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. T. Basiev and R. C. Powell, “Special issue on solid state Raman lasers - Introduction,” Opt. Mater. 11, 301–306 (1999).
    [Crossref]
  2. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
    [Crossref]
  3. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett. 30, 1500–1502 (2005).
    [Crossref] [PubMed]
  4. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30, 2454–2456 (2005).
    [Crossref] [PubMed]
  5. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005).
    [Crossref] [PubMed]
  6. V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
    [Crossref]
  7. P. Dekker, H. M. Pask, and J. A. Piper, All-Solid-State 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser, Opt. Lett. 32, 1114–1117 (2007).
    [Crossref] [PubMed]
  8. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29, 2632–2634 (2004).
    [Crossref] [PubMed]
  9. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29, 1915–1917 (2004).
    [Crossref] [PubMed]
  10. T. T. Basiev, S. V. Vassiliev, M. E. Doroshenko, V. V. Osiko, V. M. Puzikov, and M. B. Kosmyna, “Laser and self-Raman-laser oscillations of PbMoO4:Nd3+ crystal under laser diode pumping,” Opt. Lett. 31, 65–67 (2006).
    [Crossref] [PubMed]
  11. T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
    [Crossref]
  12. N. S. Ustimenko and E. M. Zabotin, “A small Raman laser based on a KGd(WO4)2:Nd3+ crystal (λ=1.538 μm) with passive resonator Q switching,” Instrum. Exp.Tech. 48, 239–240 (2005).
    [Crossref]
  13. A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
    [Crossref]
  14. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
    [Crossref]
  15. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
    [Crossref]
  16. Laser cavity analysis and design, (LAS-CAD), GmbH Germany, www.las-cad.com.
  17. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
    [Crossref]

2007 (1)

2006 (3)

T. T. Basiev, S. V. Vassiliev, M. E. Doroshenko, V. V. Osiko, V. M. Puzikov, and M. B. Kosmyna, “Laser and self-Raman-laser oscillations of PbMoO4:Nd3+ crystal under laser diode pumping,” Opt. Lett. 31, 65–67 (2006).
[Crossref] [PubMed]

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

2005 (4)

2004 (3)

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[Crossref]

Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29, 2632–2634 (2004).
[Crossref] [PubMed]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29, 1915–1917 (2004).
[Crossref] [PubMed]

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

1999 (2)

T. T. Basiev and R. C. Powell, “Special issue on solid state Raman lasers - Introduction,” Opt. Mater. 11, 301–306 (1999).
[Crossref]

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

1998 (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
[Crossref]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Bagayev, S. N.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Basiev, T. T.

Blows, J. L.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

Burakevich, V. N.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005).
[Crossref] [PubMed]

Chen, Y. F.

Dawes, J.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

Dekker, P.

P. Dekker, H. M. Pask, and J. A. Piper, All-Solid-State 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser, Opt. Lett. 32, 1114–1117 (2007).
[Crossref] [PubMed]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[Crossref]

Demidovich, A. A.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005).
[Crossref] [PubMed]

Doroshenko, M. E.

Eichler, H. J.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
[Crossref]

Grabtchikov, A. S.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005).
[Crossref] [PubMed]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Kiefer, W.

Kosmyna, M. B.

Lisinetskii, V. A.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005).
[Crossref] [PubMed]

Mildren, R. P.

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Ogilvy, H.

Ojima, Y.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[Crossref]

Oka, K.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Omatsu, T.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[Crossref]

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

Orlovich, V. A.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005).
[Crossref] [PubMed]

Osiko, V. V.

Pask, H.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

Pask, H. M.

Piper, J. A.

Powell, R. C.

T. T. Basiev and R. C. Powell, “Special issue on solid state Raman lasers - Introduction,” Opt. Mater. 11, 301–306 (1999).
[Crossref]

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Puzikov, V. M.

Rhee, H.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Shibata, H.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Takaichi, K.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Tateda, M.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

Turpin, P. Y.

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

Ueda, K.

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

Ustimenko, N. S.

N. S. Ustimenko and E. M. Zabotin, “A small Raman laser based on a KGd(WO4)2:Nd3+ crystal (λ=1.538 μm) with passive resonator Q switching,” Instrum. Exp.Tech. 48, 239–240 (2005).
[Crossref]

Vassiliev, S. V.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
[Crossref]

Zabotin, E. M.

N. S. Ustimenko and E. M. Zabotin, “A small Raman laser based on a KGd(WO4)2:Nd3+ crystal (λ=1.538 μm) with passive resonator Q switching,” Instrum. Exp.Tech. 48, 239–240 (2005).
[Crossref]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–3 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 101727–1729 (1998)
[Crossref]

Instrum. Exp.Tech. (1)

N. S. Ustimenko and E. M. Zabotin, “A small Raman laser based on a KGd(WO4)2:Nd3+ crystal (λ=1.538 μm) with passive resonator Q switching,” Instrum. Exp.Tech. 48, 239–240 (2005).
[Crossref]

Laser Phys. Lett. (2)

A. A. Kaminskii, S. N. Bagayev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H. J. Eichler, and H. Rhee, “Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,” Laser Phys. Lett. 3, 263–267 (2006).
[Crossref]

V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, and P. Y. Turpin, “Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser,” Laser Phys. Lett. 3, 71–74 (2006).
[Crossref]

Opt. Commun. (1)

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[Crossref]

Opt. Lett. (7)

Opt. Mater. (2)

T. T. Basiev and R. C. Powell, “Special issue on solid state Raman lasers - Introduction,” Opt. Mater. 11, 301–306 (1999).
[Crossref]

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11, 353–371 (1999).
[Crossref]

Prog. Quantum Electron. (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[Crossref]

Other (1)

Laser cavity analysis and design, (LAS-CAD), GmbH Germany, www.las-cad.com.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of self-Raman laser including an optional LBO crystal for generating yellow emission.

Fig. 2.
Fig. 2.

Cw Raman (1173 nm) output powers as a function of incident pump power for 13 and 24 mm physical cavity lengths.

Fig. 3.
Fig. 3.

Beam quality factor (M2) of optimized fundamental, optimized Raman and residual fundamental in an optimized Raman configuration as a function of incident pump power.

Fig. 4.
Fig. 4.

Yellow power as a function of incident pump power in cw and quasi-cw operation.

Fig. 5.
Fig. 5.

Cw fundamental and Raman spectra at 16.3 W (maximum yellow output power) and 20.2 W pump power.

Fig. 6.
Fig. 6.

(a). Near field beam profiles of quasi-cw yellow emission, with near 150 mW output [with x 2 magnification c.f Fig. 6(b)] and (b) near maximum pump with 1.88 W output.

Fig. 7.
Fig. 7.

Optimized fundamental, Raman and yellow output power as a function of incident pump power for a fixed physical cavity length of 24 mm.

Tables (1)

Tables Icon

Table 1. Calculations of induced thermal lensing by pump loading, SRS and yellow absorption, in NdGdVO4 for the cases of fundamental operation, first Stokes operation and yellow operation with 20 W of diode pump power.

Metrics