Abstract

We present principle and technique to actively stabilize and control the phase differences between multi-laser beams that produce stable and adjustable intensity patterns. This technique is based on a novel optical set-up and on a closed loop control over the phase difference between each pair of the input laser fields. Tunable optical lattices are demonstrated by exciting FeTPPCl-doped liquid crystals with the variable intensity patterns.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
    [CrossRef] [PubMed]
  2. M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43,1973-1987 (2004).
    [CrossRef]
  3. J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17,83-93 (2006).
    [CrossRef]
  4. T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
    [CrossRef]
  5. J. H. Moon, S. Yang, D. J. Pine, and S. M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13,9841-9846 (2005).
    [CrossRef] [PubMed]
  6. L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
    [CrossRef]
  7. Y. J. Liu and X. W. Sun, "Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element," Appl. Phys. Lett. 89,171101 (2006).
    [CrossRef]
  8. S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
    [CrossRef] [PubMed]
  9. J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
    [CrossRef]
  10. W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
    [CrossRef]
  11. J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Academic Press, San Diego, 1996), Chap. 8.
  12. W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259,1581-1589 (1993).
    [CrossRef] [PubMed]
  13. M. U. Wehner, M. H. Ulm, M. Wegener, "Scanning interferometer stabilized by use of Pancharatnam's phase," Opt. Lett. 22,1455-1457 (1997).
    [CrossRef]
  14. C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
    [CrossRef]
  15. J. W. Menezes, L. Cescato, E. J. de Carvalho, and E. S. Braga, "Recording different geometries of 2D hexagonal photonic crystals by choosing the phase between two-beam interference exposures," Opt. Express 14,8578-8582 (2006).
    [CrossRef] [PubMed]
  16. Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).
  17. C. T. Kuo and S. Y. Huang, "Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals," Appl. Phys. Lett. 89,111109 (2006).
    [CrossRef]

2007

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

2006

C. T. Kuo and S. Y. Huang, "Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals," Appl. Phys. Lett. 89,111109 (2006).
[CrossRef]

J. W. Menezes, L. Cescato, E. J. de Carvalho, and E. S. Braga, "Recording different geometries of 2D hexagonal photonic crystals by choosing the phase between two-beam interference exposures," Opt. Express 14,8578-8582 (2006).
[CrossRef] [PubMed]

J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17,83-93 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Y. J. Liu and X. W. Sun, "Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element," Appl. Phys. Lett. 89,171101 (2006).
[CrossRef]

2005

J. H. Moon, S. Yang, D. J. Pine, and S. M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13,9841-9846 (2005).
[CrossRef] [PubMed]

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
[CrossRef]

2004

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
[CrossRef]

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43,1973-1987 (2004).
[CrossRef]

2001

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

1997

1993

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259,1581-1589 (1993).
[CrossRef] [PubMed]

Braga, E. S.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

Cescato, L.

Chan, C. T.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

Chang, W. S.

J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
[CrossRef]

Chen, C. G.

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

Crawford, G. P.

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43,1973-1987 (2004).
[CrossRef]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259,1581-1589 (1993).
[CrossRef] [PubMed]

de Carvalho, E. J.

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

Dong, J. W.

W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
[CrossRef]

Escuti, M. J.

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43,1973-1987 (2004).
[CrossRef]

Ford, J.

J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17,83-93 (2006).
[CrossRef]

Fujishima, A.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

Gu, Z.-Z.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

Herlmann, R. K.

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

Huang, S. Y.

C. T. Kuo and S. Y. Huang, "Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals," Appl. Phys. Lett. 89,111109 (2006).
[CrossRef]

Jie, L.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

Juodkazis, S.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Kondo, T.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Konkola, P. T.

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

Kubo, S.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

Kuo, C. T.

C. T. Kuo and S. Y. Huang, "Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals," Appl. Phys. Lett. 89,111109 (2006).
[CrossRef]

Li, M.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

Liu, Y. J.

Y. J. Liu and X. W. Sun, "Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element," Appl. Phys. Lett. 89,171101 (2006).
[CrossRef]

Mao, W. D.

W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
[CrossRef]

Matsuo, S.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Menezes, J. W.

Misawa, H.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Mizeikis, V.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Moon, J. H.

J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17,83-93 (2006).
[CrossRef]

J. H. Moon, S. Yang, D. J. Pine, and S. M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13,9841-9846 (2005).
[CrossRef] [PubMed]

J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
[CrossRef]

Pati, G. S.

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

Pine, D. J.

J. H. Moon, S. Yang, D. J. Pine, and S. M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13,9841-9846 (2005).
[CrossRef] [PubMed]

J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
[CrossRef]

Rabitz, H.

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259,1581-1589 (1993).
[CrossRef] [PubMed]

Sato, O.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

Schtternburg, M. L.

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

Segawa, H.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

Sun, X. W.

Y. J. Liu and X. W. Sun, "Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element," Appl. Phys. Lett. 89,171101 (2006).
[CrossRef]

Takahashi, K.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

Tao, L.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

Ulm, M. H.

Wang, G. P.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

Wang, H. Z.

W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
[CrossRef]

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259,1581-1589 (1993).
[CrossRef] [PubMed]

Wegener, M.

Wehner, M. U.

Wong, K. S.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

Wu, L. J.

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

Xiang, Y.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

Yang, S.

J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17,83-93 (2006).
[CrossRef]

J. H. Moon, S. Yang, D. J. Pine, and S. M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13,9841-9846 (2005).
[CrossRef] [PubMed]

Yang, S. M.

J. H. Moon, S. Yang, D. J. Pine, and S. M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13,9841-9846 (2005).
[CrossRef] [PubMed]

J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
[CrossRef]

Zhong, Y. C.

W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
[CrossRef]

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

Zhou, J. Y.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

Appl. Phys. A

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, "Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model," Appl. Phys. A 86,207-211 (2007).

Appl. Phys. Lett.

C. T. Kuo and S. Y. Huang, "Enhancement of diffraction of dye-doped polymer film assisted with nematic liquid crystals," Appl. Phys. Lett. 89,111109 (2006).
[CrossRef]

L. J. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86,241102 (2005).
[CrossRef]

Y. J. Liu and X. W. Sun, "Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element," Appl. Phys. Lett. 89,171101 (2006).
[CrossRef]

J. H. Moon, S. M. Yang, D. J. Pine, and W. S. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85,4184-4186 (2004).
[CrossRef]

J. Am. Chem. Soc.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable Photonic Band Gap Crystals based on a Liquid Crystal-Infiltrated Inverse Opal Structure," J. Am. Chem. Soc. 126,8314-8319 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B.

W. D. Mao, Y. C. Zhong, J. W. Dong, and H. Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B. 22, 1085-1091(2005).
[CrossRef]

J. Vac. Sci. Technol. B

C. G. Chen, P. T. Konkola, R. K. Herlmann, G. S. Pati, and M. L. Schtternburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19,2335-2341 (2001).
[CrossRef]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000).
[CrossRef] [PubMed]

New J. Phys.

T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography," New J. Phys. 8,1-16 (2006).
[CrossRef]

Opt. Eng.

M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43,1973-1987 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Polym. Adv. Technol.

J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17,83-93 (2006).
[CrossRef]

Science

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: The dream is alive," Science 259,1581-1589 (1993).
[CrossRef] [PubMed]

Other

J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Academic Press, San Diego, 1996), Chap. 8.

Supplementary Material (3)

» Media 1: AVI (289 KB)     
» Media 2: AVI (317 KB)     
» Media 3: AVI (363 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Single device for redirecting the light fields of two laser beams.

Fig. 2.
Fig. 2.

Experimental setup of the phase controlled holographic lithography.

Fig. 3.
Fig. 3.

Movies of the real time intensity pattern without the control unit (a) (289k), with the control unit (b) (317k) and with controlled and shifted patter along the x-direction (c) (363k).

Fig. 4.
Fig. 4.

The averaged intensity pattern for 9 min with the active stabilization unit.

Fig. 5.
Fig. 5.

Setup of the tunable optical lattices in LC. The inset represents the results obtained from Eq. (2) for the grating period of three beams with equal initial phases (a), phase of beam 1 shifts by an amount of π (b) .

Fig. 6.
Fig. 6.

The diffraction intensity of the He-Ne laser as a function of the exciting light phase.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = i E i 2 + i < j 2 E i E j cos [ ( k i k j ) r + ( φ i φ j ) ] i , j = 1 ~ n
I = E 2 [ 3 + 2 cos ( kx sin θ + φ 12 ) + 2 cos ( 2 kx sin θ + φ 13 ) + 2 cos ( kx sin θ + φ 23 ) ]

Metrics