Abstract

Polycrystalline silicon (poly-Si) thin film transistors (TFTs) fabricated by near-infrared femtosecond laser annealing (FLA) are demonstrated. The FLA-annealed poly-Si channels exhibit low tail-state, deep-state, and midgap-state densities of grain traps. Characteristics such as field-effect mobility, threshold voltage, and subthreshold slope for FLA-annealed poly-TFTs are comparable to those of conventional approaches. A wide process window for annealing laser fluences was confirmed by examining the changes in electrical parameters for transistors with various channel dimensions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,“ Appl. Phys. Lett. 63, 1969–1971 (1993).
    [Crossref]
  2. S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
    [Crossref]
  3. R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
    [Crossref]
  4. A. Hara, F. Takeuchi, and N. Sasaki, “Selective single-crystalline-silicon growth at the pre-defined active regions of TFTs on a glass by a scanning CW laser irradiation,” in Proceedings of IEEE International Electron Devices Meeting (2000), pp. 209–212
  5. Y. F. Tang, S. R. P. Silva, and M. J. Rose, “Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon,” Appl. Phys. Lett. 78, 186–188 (2001).
    [Crossref]
  6. Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
    [Crossref]
  7. Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
    [Crossref]
  8. C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
    [Crossref]
  9. G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
    [Crossref]
  10. R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.
  11. A. Burtsev, R. Ishihara, and C. I. M. Beenakker, “Energy density window for location controlled Si grains by dual-beam excimer laser,” Thin Solid Films 419, 199–206 (2002).
    [Crossref]
  12. R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
    [Crossref]
  13. J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
    [Crossref]
  14. Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
    [Crossref]
  15. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,“ IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [Crossref]
  16. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,“ Nature Mater.  1, 217–224 (2002).
    [Crossref]
  17. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
    [Crossref] [PubMed]
  18. G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett. 49, 1025–1027 (1986).
    [Crossref]
  19. S. M. Sze, Semiconductor Devices Physics and Technology (Academic, 1985)
  20. M. Miyasaka and J. Stoemenos, “Excimer laser annealing of amorphous and solid-phase-crystallized silicon films,” J. Appl. Phys. 86, 5556–5565 (1999).
    [Crossref]
  21. S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
    [Crossref]
  22. A. T. Voutsas, “A new era of crystallization: advances in polysilicon crystallization and crystal engineering,” Appl. Surface Science 208, 250–262 (2003).
    [Crossref]
  23. K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
    [Crossref]
  24. N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices,  38, 55–60(1991).
    [Crossref]

2006 (3)

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
[Crossref]

2005 (2)

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
[Crossref]

2004 (3)

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

2003 (2)

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

A. T. Voutsas, “A new era of crystallization: advances in polysilicon crystallization and crystal engineering,” Appl. Surface Science 208, 250–262 (2003).
[Crossref]

2002 (2)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,“ Nature Mater.  1, 217–224 (2002).
[Crossref]

A. Burtsev, R. Ishihara, and C. I. M. Beenakker, “Energy density window for location controlled Si grains by dual-beam excimer laser,” Thin Solid Films 419, 199–206 (2002).
[Crossref]

2001 (2)

Y. F. Tang, S. R. P. Silva, and M. J. Rose, “Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon,” Appl. Phys. Lett. 78, 186–188 (2001).
[Crossref]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

2000 (1)

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

1999 (2)

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

M. Miyasaka and J. Stoemenos, “Excimer laser annealing of amorphous and solid-phase-crystallized silicon films,” J. Appl. Phys. 86, 5556–5565 (1999).
[Crossref]

1997 (2)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,“ IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[Crossref]

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

1993 (1)

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,“ Appl. Phys. Lett. 63, 1969–1971 (1993).
[Crossref]

1991 (1)

N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices,  38, 55–60(1991).
[Crossref]

1986 (1)

G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett. 49, 1025–1027 (1986).
[Crossref]

Abe, D.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

Audebert, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Ayres, J. R.

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

Balcou, Ph.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Beenakker, C. I. M.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

A. Burtsev, R. Ishihara, and C. I. M. Beenakker, “Energy density window for location controlled Si grains by dual-beam excimer laser,” Thin Solid Films 419, 199–206 (2002).
[Crossref]

Bergmann, R. B.

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

Bhat, M.

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

Brotherton, S. D.

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

Burtsev, A.

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

A. Burtsev, R. Ishihara, and C. I. M. Beenakker, “Energy density window for location controlled Si grains by dual-beam excimer laser,” Thin Solid Films 419, 199–206 (2002).
[Crossref]

Camallerid, M.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Ch van der Wilt, P.

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

Chan, L.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Chang, T. Y.

S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
[Crossref]

Chao, C. W.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Chen, C.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Chen, Z. H.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Cheng, C. W.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Cho, B. J.

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

Chong, Y. F.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Chua, L. H.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Cuscunáa, M.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Dai, B. T.

Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
[Crossref]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Dassow, R.

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,“ IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[Crossref]

Förster, E.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Fortunato, G.

G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett. 49, 1025–1027 (1986).
[Crossref]

Fortunatoa, G.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Fourmaux, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Gauthier, J. C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Geindre, J. P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Gowers, J. P.

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

Grauvogl, M.

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

Grillon, G.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Hajjar, J. J.

N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices,  38, 55–60(1991).
[Crossref]

Hara, A.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

A. Hara, F. Takeuchi, and N. Sasaki, “Selective single-crystalline-silicon growth at the pre-defined active regions of TFTs on a glass by a scanning CW laser irradiation,” in Proceedings of IEEE International Electron Devices Meeting (2000), pp. 209–212

Hiroshima, Y.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

Hulin, D.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Im, J. S.

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,“ Appl. Phys. Lett. 63, 1969–1971 (1993).
[Crossref]

Inoue, S.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

Ishihara, R.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

A. Burtsev, R. Ishihara, and C. I. M. Beenakker, “Energy density window for location controlled Si grains by dual-beam excimer laser,” Thin Solid Films 419, 199–206 (2002).
[Crossref]

Katoh, Y.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Kim, H. J.

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,“ Appl. Phys. Lett. 63, 1969–1971 (1993).
[Crossref]

Kitahara, K.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Köhler, J. R.

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

La Magnab, A.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Lee, Y. J.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Lei, T. F.

S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
[Crossref]

Lin, Y. T.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,“ IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[Crossref]

Lo, W. H.

S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
[Crossref]

Lu, Y. F.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Magríd, A.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Mariuccia, L.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,“ Nature Mater.  1, 217–224 (2002).
[Crossref]

McCulloch, D. J.

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

Metselaar, J. W.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

Migliorato, P.

G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett. 49, 1025–1027 (1986).
[Crossref]

Miyasaka, M.

M. Miyasaka and J. Stoemenos, “Excimer laser annealing of amorphous and solid-phase-crystallized silicon films,” J. Appl. Phys. 86, 5556–5565 (1999).
[Crossref]

Monakhovc, E.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,“ IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[Crossref]

Ohashi, Y.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

Pan, C. L.

Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
[Crossref]

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Peng, J. T.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Pey, K. L.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Poon, C. H.

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

Priviterab, V.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Reif, R.

N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices,  38, 55–60(1991).
[Crossref]

Rischel, C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Rose, M. J.

Y. F. Tang, S. R. P. Silva, and M. J. Rose, “Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon,” Appl. Phys. Lett. 78, 186–188 (2001).
[Crossref]

Rousse, A.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Salinasd, D.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Sasaki, N.

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

A. Hara, F. Takeuchi, and N. Sasaki, “Selective single-crystalline-silicon growth at the pre-defined active regions of TFTs on a glass by a scanning CW laser irradiation,” in Proceedings of IEEE International Electron Devices Meeting (2000), pp. 209–212

Sebban, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

See, A.

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Shieh, J. M.

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
[Crossref]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Shimoda, T.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

Silva, S. R. P.

Y. F. Tang, S. R. P. Silva, and M. J. Rose, “Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon,” Appl. Phys. Lett. 78, 186–188 (2001).
[Crossref]

Simone, F.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Song, W. D.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Stoemenos, J.

M. Miyasaka and J. Stoemenos, “Excimer laser annealing of amorphous and solid-phase-crystallized silicon films,” J. Appl. Phys. 86, 5556–5565 (1999).
[Crossref]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,“ Nature Mater.  1, 217–224 (2002).
[Crossref]

Svenssonc, B. G.

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Sze, S. M.

S. M. Sze, Semiconductor Devices Physics and Technology (Academic, 1985)

Takeuchi, F.

A. Hara, F. Takeuchi, and N. Sasaki, “Selective single-crystalline-silicon growth at the pre-defined active regions of TFTs on a glass by a scanning CW laser irradiation,” in Proceedings of IEEE International Electron Devices Meeting (2000), pp. 209–212

Tan, L. S.

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

Tang, Y. F.

Y. F. Tang, S. R. P. Silva, and M. J. Rose, “Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon,” Appl. Phys. Lett. 78, 186–188 (2001).
[Crossref]

Thompson, M. O.

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,“ Appl. Phys. Lett. 63, 1969–1971 (1993).
[Crossref]

Trainor, M. J.

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

Uschmann, I.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

van Dijk, B. D.

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

Vikas, R.

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

Voutsas, A. T.

A. T. Voutsas, “A new era of crystallization: advances in polysilicon crystallization and crystal engineering,” Appl. Surface Science 208, 250–262 (2003).
[Crossref]

Wang, S. D.

S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
[Crossref]

Wang, Y. C.

Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
[Crossref]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Wee, A. T. S.

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

Werner, J. H.

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

Yamauchi, N.

N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices,  38, 55–60(1991).
[Crossref]

Zaitsev, A.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Appl. Phys. Lett. (7)

J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,“ Appl. Phys. Lett. 63, 1969–1971 (1993).
[Crossref]

Y. F. Tang, S. R. P. Silva, and M. J. Rose, “Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon,” Appl. Phys. Lett. 78, 186–188 (2001).
[Crossref]

Y. T. Lin, C. Chen, J. M. Shieh, Y. J. Lee, C. L. Pan, C. W. Cheng, J. T. Peng, and C. W. Chao, “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors,” Appl. Phys. Lett. 88, 233511–233513 (2006).
[Crossref]

Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett. 76, 3197–3199 (2000).
[Crossref]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85, 1232–1234 (2004).
[Crossref]

Y. C. Wang, C. L. Pan, J. M. Shieh, and B. T. Dai, “Dopant profile engineering by near-infrared femtosecond laser activation,” Appl. Phys. Lett. 88, 131104–131106 (2006).
[Crossref]

G. Fortunato and P. Migliorato, “Determination of gap state density in polycrystalline silicon by field-effect conductance,” Appl. Phys. Lett. 49, 1025–1027 (1986).
[Crossref]

Appl. Surface Science (1)

A. T. Voutsas, “A new era of crystallization: advances in polysilicon crystallization and crystal engineering,” Appl. Surface Science 208, 250–262 (2003).
[Crossref]

IEDM Technical Digest (1)

R. Vikas, R. Ishihara, Y. Hiroshima, D. Abe, S. Inoue, T. Shimoda, J. W. Metselaar, and C. I. M. Beenakker, “High Performance Single Grain Si TFTs Inside a Location-Controlled Grain by 㮼-Czochralski Process with Capping Layer,” IEEE International Electron Devices Meeting, 2005IEDM Technical Digest,  919–922, 5–7 Dec. 2005.

IEEE Electron Devices Lett. (1)

S. D. Wang, W. H. Lo, T. Y. Chang, and T. F. Lei, “A novel process-compatible fluorination technique with electrical characteristic improvements of poly-Si TFTs,” IEEE Electron Devices Lett. 26, 372–374(2005).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,“ IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[Crossref]

IEEE Trans. Electron Devices (1)

N. Yamauchi, J. J. Hajjar, and R. Reif, “Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film,” IEEE Trans. Electron Devices,  38, 55–60(1991).
[Crossref]

J. Appl. Phys. (3)

K. Kitahara, Y. Ohashi, Y. Katoh, A. Hara, and N. Sasaki, “Submicron-scale characterization of poly-Si thin film crystallized excimer laser and continuous-wave laser,” J. Appl. Phys. 95, 7850–7855 (2004).
[Crossref]

M. Miyasaka and J. Stoemenos, “Excimer laser annealing of amorphous and solid-phase-crystallized silicon films,” J. Appl. Phys. 86, 5556–5565 (1999).
[Crossref]

S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,“ J. Appl. Phys. 82, 4086–4094 (1997).
[Crossref]

J. Electrochem. Soc. (1)

C. H. Poon, L. S. Tan, B. J. Cho, A. See, and M. Bhat, “Boron profile narrowing in laser-processed silicon after rapid thermal anneal,” J. Electrochem. Soc. 151, G80–G83 (2004).
[Crossref]

Nature (1)

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[Crossref] [PubMed]

Nature Mater (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,“ Nature Mater.  1, 217–224 (2002).
[Crossref]

Solid State Phen. (1)

R. Dassow, J. R. Köhler, M. Grauvogl, R. B. Bergmann, and J. H. Werner, “Laser-crystallized polycrystalline silicon on glass for photovoltaic applications,” Solid State Phen. 67–68, 193–198 (1999).
[Crossref]

Thin Solid Films (2)

A. Burtsev, R. Ishihara, and C. I. M. Beenakker, “Energy density window for location controlled Si grains by dual-beam excimer laser,” Thin Solid Films 419, 199–206 (2002).
[Crossref]

R. Ishihara, P. Ch van der Wilt, B. D. van Dijk, A. Burtsev, and J. W. Metselaar, “Advanced excimer-laser crystallization process for single-crystalline thin film transistors,“ Thin Solid Films 427, 77–85 (2003).
[Crossref]

Thin Solid Films, (1)

G. Fortunatoa, V. Priviterab, A. La Magnab, L. Mariuccia, M. Cuscunáa, B. G. Svenssonc, E. Monakhovc, M. Camallerid, A. Magríd, D. Salinasd, and F. Simone, “Excimer Laser annealing for shallow junction formation in Si power MOS devices,” Thin Solid Films, 504, 2–6 (2006).
[Crossref]

Other (2)

A. Hara, F. Takeuchi, and N. Sasaki, “Selective single-crystalline-silicon growth at the pre-defined active regions of TFTs on a glass by a scanning CW laser irradiation,” in Proceedings of IEEE International Electron Devices Meeting (2000), pp. 209–212

S. M. Sze, Semiconductor Devices Physics and Technology (Academic, 1985)

Supplementary Material (1)

» Media 1: MPG (3154 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Transfer characteristics and transconductance versus gate voltage for FLA and SPC processed TFTs with channel dimensions of (a) W = L= 2 μm and (b) W = L= 10 μm.

Fig. 2.
Fig. 2.

(a). Threshold voltages, (b) subthreshold slopes and (c) mobilities for TFTs annealed by FLA with different fluences and the SPC process.

Fig. 3.
Fig. 3.

Grain trap-state density in the energy bandgap of the poly-Si channels of TFTs with different channel dimensions processed by SPC and FLA at various fluences.

Metrics