Abstract

A frequency stabilized single broad area laser in a V-shaped external cavity is used for Second Harmonic Generation (SHG) in a waveguide channel with dimensions of 3 μm × 5 μm × 10 mm of a PP-MgO:LN crystal. A maximum coupling efficiency of 63% could be obtained. An optical output power of 100.4 mW of visible light at 488 nm could be generated with 265 mW of coupled infrared light. This results in a single pass conversion efficiency of 37.8%. No photorefractive damage or saturation effects were observed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
    [CrossRef]
  2. A. Bouchier, G. Lucas-Leclin, P. Georges, and J. Maillard, "Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide," Opt. Express 13, 6974-6979 (2005).
    [CrossRef] [PubMed]
  3. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
    [CrossRef]
  4. E. U. Rafailov, W. Sibbett, A. Mooradian, J. G. McInerney, H. Karlsson, S. Wang, and F. Laurell, "Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal," Opt. Lett. 28, 2091-2093 (2003).
    [CrossRef] [PubMed]
  5. Z. Ye, Q. Lou, J. Dong, Y. Wei, and L. Lin, "Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals," Opt. Lett. 30, 73-74 (2005).
    [CrossRef] [PubMed]
  6. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, "31%-efficient blue second-harmonic generation in a periodically poled MgOLiNbO3 waveguide by frequency doubling of an AlGaAs laser diode," Opt. Lett. 24, 1590-1592 (1999).
    [CrossRef]
  7. M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. Petersen, "Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier," Opt. Express 13, 10589-10596 (2005).
    [CrossRef] [PubMed]
  8. D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, "250 mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP," Opt. Lett. 27, 1055-1057 (2002).
    [CrossRef]
  9. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006).
    [CrossRef] [PubMed]
  10. V. Raab, D. Skoczowsky, and R. Menzel, "Tuning high-power laser diodes with as much as 0.38W of power and M 2 = 1.2 over a range of 32 nm with 3-GHz bandwidth," Opt. Lett. 27, 1995-1997 (2002).
    [CrossRef]
  11. A. Jechow, V. Raab and R. Menzel, "Tunable diffraction-limited light at 488 nm by single-pass frequency doubling of a broad area diode laser," Appl. Opt. 46, 943-946 (2007).
    [CrossRef] [PubMed]
  12. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide," Opt. Lett. 27, 43-45 (2002).
    [CrossRef]

2007 (1)

2006 (1)

2005 (3)

2004 (1)

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

2003 (1)

2002 (3)

1999 (1)

1997 (1)

Andersen, P. E.

Batchko, R. G.

Bouchier, A.

Butterworth, S. D.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Byer, R. L.

Caprara, A. L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Charles, J. P.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Chi, M.

Chilla, J. L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Dong, J.

Dzionk, C.

Eger, D.

Englander, A.

Erbert, G.

Fejer, M. M.

Georges, P.

Güther, R.

Holm, J.

Jechow, A.

Jensen, O. B.

Karlsson, H.

Katz, M.

Kitaoka, Y.

Kurz, J. R.

Laurell, F.

Lin, L.

Lou, Q.

Lucas-Leclin, G.

Maillard, J.

Maiwald, M.

McInerney, J. G.

Menzel, R.

Miller, G. D.

Mizuuchi, K.

Mooradian, A.

Parameswaran, K. R.

Paschke, K.

Pedersen, C.

Petersen, P. M.

Raab, V.

Rafailov, E. U.

Reed, M. K.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Robertson, A.

Roussev, R. V.

Schumacher, J.

Schwertfeger, S.

Sibbett, W.

Skoczowsky, D.

Spinelli, L.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Sugita, T.

Sumpf, B.

Tränkle, G.

Tremont, M. A.

Tulloch, W. M.

Wallenstein, R.

Wang, S.

Wei, Y.

Weise, D. R.

Woll, D.

Yamamoto, K.

Ye, Z.

Zeitschel, A.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Appl. Opt. (1)

Opt. Express (2)

Opt. Lett. (8)

D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, "250 mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP," Opt. Lett. 27, 1055-1057 (2002).
[CrossRef]

M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006).
[CrossRef] [PubMed]

V. Raab, D. Skoczowsky, and R. Menzel, "Tuning high-power laser diodes with as much as 0.38W of power and M 2 = 1.2 over a range of 32 nm with 3-GHz bandwidth," Opt. Lett. 27, 1995-1997 (2002).
[CrossRef]

E. U. Rafailov, W. Sibbett, A. Mooradian, J. G. McInerney, H. Karlsson, S. Wang, and F. Laurell, "Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal," Opt. Lett. 28, 2091-2093 (2003).
[CrossRef] [PubMed]

Z. Ye, Q. Lou, J. Dong, Y. Wei, and L. Lin, "Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals," Opt. Lett. 30, 73-74 (2005).
[CrossRef] [PubMed]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, "31%-efficient blue second-harmonic generation in a periodically poled MgOLiNbO3 waveguide by frequency doubling of an AlGaAs laser diode," Opt. Lett. 24, 1590-1592 (1999).
[CrossRef]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide," Opt. Lett. 27, 43-45 (2002).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834-1836 (1997).
[CrossRef]

Proc. SPIE (1)

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, "High power optically pumped semiconductor lasers," Proc. SPIE 5332, 143-150 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the V-shaped laser setup. It consists of a anti reflection coated broad area laser diode, a fast axis collimator (FAC), two cyl. lenses in slow axis (L1, L2), a slit aperture and a diffraction grating in Littrow configuration. For SHG in a PPLN waveguide a beam shaping lens system (L3-5) and an aspherical focusing lens (L6) is used. The light is collimated by an aspherical lens (L7) and the fundamental and Second Harmonic waves are separated by a dichroic mirror.

Fig. 2.
Fig. 2.

Power of the generated blue light (PSHG) as a function of the power of the infrared light (PIR) coupled into the waveguide.

Fig. 3.
Fig. 3.

Spectrum of the blue light measured with an optical spectrum analyzer (OSA) at an SHG output power of 81 mW. A band with of 50 pm and a side band suppression of more than 55 dB could be obtained.

Fig. 4.
Fig. 4.

Beam caustics for both axis of the blue light at an optical output power of 81 mW. The hyperbolic fit results in a beam quality of M2 = 1.05± 0.4 for the y-axis and M2 = 1.03 ± 0.4 for the x-axis.

Fig. 5.
Fig. 5.

Emission wavelength of the blue light as a function of the PPLN temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P SHG = P IR coupled 2 tan h 2 ( η norm P IR coupled l 2 ) .

Metrics