Abstract

Contrary to the conventional near-field superlensing, subwavelength superlens imaging is experimentally demonstrated in the far-field. The key element is termed as a Far-field SuperLens (FSL) which consists of a conventional superlens and a nanoscale coupler. The evanescent fields from the object are enhanced and then converted into propagating fields by the FSL. By only measuring the propagating field in the far-field, the object image can be reconstructed with subwavelength resolution. As an example of this concept, we design and fabricate a silver structured one dimensional FSL. Experimental results show that feature resolution of better than 50nm is possible using current FSL design. © 2007

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, and E. Wolf, Principles of Optics (Pergamon Press, Fourth edition 1970).
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
    [CrossRef] [PubMed]
  3. D. Courjon, Near-field microscopy and near-field optics (London, Imperial College Press, 2003).
  4. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated emission deletion microscopy," Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]
  5. S. W. Hell, "Toward fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003).
    [CrossRef] [PubMed]
  6. R. Heintzmann, T. M. Jovin, and C. Cremer, "Saturated patterned excitation microscopy-a concept for optical resolution improvement," J. Opt. Soc. Am. A 19, 1599-1609 (2002).
    [CrossRef]
  7. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," PNAS 102, 13081-13086 (2005).
    [CrossRef] [PubMed]
  8. M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006).
    [CrossRef]
  9. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
    [CrossRef] [PubMed]
  10. J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988).
    [CrossRef] [PubMed]
  11. A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
    [CrossRef] [PubMed]
  12. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  13. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  14. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  15. A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).
    [CrossRef] [PubMed]
  16. W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
    [CrossRef]
  17. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  18. V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
    [CrossRef] [PubMed]
  19. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef] [PubMed]
  20. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  21. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
    [CrossRef]
  22. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  23. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  24. S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
    [CrossRef]
  25. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
    [CrossRef] [PubMed]
  26. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
    [CrossRef] [PubMed]
  27. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
    [CrossRef]
  28. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  29. Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
    [CrossRef] [PubMed]
  30. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc.-Oxf 198, 82-87 (2000).
    [CrossRef]
  31. J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000).
    [CrossRef] [PubMed]
  32. V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).
  33. M. A. Grimm and A. W. Lohmann, "Superresolution image for one-dimensional objects," J. Opt. Soc. Am. 56, 1151-1156 (1966).
    [CrossRef]
  34. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]

2007 (3)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

2006 (6)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
[CrossRef] [PubMed]

S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
[CrossRef]

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006).
[CrossRef]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

2005 (5)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," PNAS 102, 13081-13086 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef] [PubMed]

2003 (7)

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

S. W. Hell, "Toward fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (3)

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc.-Oxf 198, 82-87 (2000).
[CrossRef]

J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1996 (1)

V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).

1995 (1)

1994 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

1988 (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988).
[CrossRef] [PubMed]

1966 (1)

Alekseyev, L. V.

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Bailey, B.

V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).

Bates, M.

M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006).
[CrossRef]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Cremer, C.

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
[CrossRef]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, N.

S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
[CrossRef]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Foteinopou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000).
[CrossRef] [PubMed]

Gaylord, T. K.

Gelles, J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988).
[CrossRef] [PubMed]

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Grann, E. B.

Grbic, A.

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef] [PubMed]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Grimm, M. A.

Gustafsson, M. G. L.

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," PNAS 102, 13081-13086 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc.-Oxf 198, 82-87 (2000).
[CrossRef]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Heintzmann, R.

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Jacob, Z.

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Jovin, T. M.

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000).
[CrossRef] [PubMed]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Kostelak, R. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Krishnamurthi, V.

V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).

Lanni, F.

V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
[CrossRef]

Lohmann, A. W.

Lu, W. T.

V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Mckinney, S. A.

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Moharam, M. G.

Narimanov, E.

Narimanov, E. E.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Parimi, V. P.

V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Podolskiy, V. A.

Pommet, D. A.

Rust, M. J.

M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

Schnapp, B. J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988).
[CrossRef] [PubMed]

Selvin, P. R.

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Sheetz, M. P.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988).
[CrossRef] [PubMed]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Sridhar, S.

V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Stemmer, A.

J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Vodo, P.

V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

Wichmann, J.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
[CrossRef]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Zhuang, X. W.

M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006).
[CrossRef]

Nano. Lett. (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

S. W. Hell, "Toward fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003).
[CrossRef] [PubMed]

Nature (2)

V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988).
[CrossRef] [PubMed]

Nature Method (1)

M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006).
[CrossRef]

New J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Oxf (1)

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc.-Oxf 198, 82-87 (2000).
[CrossRef]

Phy. Rev. B (1)

A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006).
[CrossRef]

Phys. Rev. B (2)

W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Phys. Rev. Lett. (5)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

PNAS (2)

J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," PNAS 102, 13081-13086 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).

Science (6)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003).
[CrossRef] [PubMed]

Other (2)

D. Courjon, Near-field microscopy and near-field optics (London, Imperial College Press, 2003).

M. Born, and E. Wolf, Principles of Optics (Pergamon Press, Fourth edition 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Improve the far-field resolvability by near-field moiré effect. (a) The near-field optical image of the object. (b) Subwavelength coupling grating. (c) Far-field observable moiré fringes by superposing (a) and (b). The original object image can be numerically restored from the moiré fringes with subwavelength resolution.

Fig. 2.
Fig. 2.

The concept of a simplified 1D far-field superlens (FSL). The accessible area of a conventional optical lens in Fourier space is defined by the central circle with radius kobs (kobs is limited to propagating wave). A FSL can shift original evanescent waves to propagating waves by its diffraction orders. If the object is also 1D and has an angular misalignment α with respect to the grating of the FSL, the object information goes through different diffraction orders will be separated in space. By this way, the maximum spatial frequency that can be detected and restored is kobs+k Λ.

Fig. 3.
Fig. 3.

The optical amplitude transfer function (ATF) of a structured silver FSL (only propagating wave is shown) for TM mode. The FSL geometries are shown in the inset. The refractive index of the surrounding medium is set to 1.52 and the working light wavelength is 377nm in vacuum

Fig. 4.
Fig. 4.

Scanning electron microscope (SEM) image of the silver structured FSL. The dimensions are the same as shown in Fig. 3 inset. Inset: a zoom-in atomic force microscope (AFM) image shows the grating height is also quite uniform. The ridge width in AFM image is little bit larger than that in SEM image due to the finite size of the AFM tip.

Fig. 5.
Fig. 5.

Directional FSL images of (a) single-line object with 50nm linewidth; (b) double-line object with 50nm linewidth and 70nm edge-to-edge distance; (c) triple-line object with 50nm linewidth and 70nm edge-to-edge distance. (d), (e), and (f) 2D Fourier transformation of (a), (b), and (c) respectively. The area within the white circle represents the far-field detectable information (NA≤1.4) by the optical microscope. (g), (h), and (i) Reconstructed images from (d), (e), and (f) respectively. (j), (k), and (l) zoom-in view of the dashed white rectangle area in (g), (h), and (i) respectively.

Fig. 6.
Fig. 6.

Directional FSL images of a triple-line object with 50nm linewidth and (a) 60nm (b) 80nm and (c) 100nm edge-to-edge distance. (d), (e), and (f) Zoom-in view of the reconstructed images for object (a), (b) and (c) respectively.

Metrics