Abstract

Next generation High-Speed optical packet switching networks require components capable of recognising the optical header to enable on-the-fly accurate switching of incoming data packets to their destinations. This paper experimentally demonstrates a comparison between two different optical header recognition structures; A passive structure based on the use of Fiber Bragg Gratings (FBGs), whereas the active structure employs Opto-VLSI processors that synthesise dynamic wavelength profile through digital phase holograms. The structures are experimentally demonstrated at 10Gbps. Performance comparison between the two structures is also discussed. These optical header recognition structures are attractive for multiwavelength optical network and applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003).
    [CrossRef]
  2. M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A Au, H.P. Lee, D. S. Starodubov, and A. E. Willner, "Optically assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators," J. Lightwave Technol. 21, 2765-2778 (2003).
    [CrossRef]
  3. Z. Zhu, V. J. Hernandez, M. Y. Jeon, J. Cao, Z. Pan, and S. J. B. Yoo, "RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems," J. Lightwave Technol. 21, 3155 - 3166 (2003).
    [CrossRef]
  4. C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
    [CrossRef]
  5. A. Okada, "All-optical packet routing in AWG-based wavelength routing networks using an out-of-band optical label," in Proceedings of OFC’02, (Washington DC, 2002), pp. 213 - 215.
  6. M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
    [CrossRef]
  7. N. Wada, H. Harai, W. Chujo, and F. Kubota, "Photonic packet routing based on multi-wavelength label switching using fiber Bragg gratings," in Proceedings of ECOC, (Munich 2000).
  8. N. Wada, H. Harai, W. Chujo, and F. Kubota, "Multi-hop variable length photonic packet routing based on multi-wavelength label switching waveband routing, and label swapping," in Proceedings of OFC (2002), pp. 216-217.
  9. H. L. Lee and D. Simeonidou, "Novel optical packet header decoding via cross-correlation," in Proceedings of Photonics Switching (2001), pp. 66-67.
  10. K. Chan, F. Tong, C. K Chan, L. K. Chen, and W. Hung, "An all-optical packet header recognition scheme for self-routing packet networks," in Proceedings of OFC2002, (2002), pp. 284-285.
  11. S. Shao and M. Kao, "WDM coding for high capacity lightwave systems," J. Lightwave Technol. 12, 137-148 (1994).
    [CrossRef]
  12. D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
    [CrossRef]
  13. C. Skoufis, S. Sygletos, N. Leligou, C. Matrakidis, I. Pountourakis, and A. Stavdas, "Data-centric networking using multiwavelength headers/labels in packet-over-WDM networks: A comparative study," J. Lightwave Technol. 21, 2110 - 2122 (2003).
    [CrossRef]
  14. A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
    [CrossRef]
  15. M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto VLSI processors," Opt. Express 14, 6823-6836 (2006).
    [CrossRef] [PubMed]
  16. M. C. Parker and S. D. Walker, "Arrayed waveguide gratings, fiber bragg gratings, and photonic crystal: an isomorphic Fourier transform light propagation analysis," IEEE J. Sel. Top. Quantum Electron. 8, 1158-1167 (2002).
    [CrossRef]
  17. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg Gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
    [CrossRef]
  18. S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
    [CrossRef]
  19. Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
    [CrossRef]
  20. M Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006).
    [CrossRef]
  21. R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
    [CrossRef]

2006 (2)

2005 (1)

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
[CrossRef]

2004 (1)

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

2003 (5)

2002 (2)

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

M. C. Parker and S. D. Walker, "Arrayed waveguide gratings, fiber bragg gratings, and photonic crystal: an isomorphic Fourier transform light propagation analysis," IEEE J. Sel. Top. Quantum Electron. 8, 1158-1167 (2002).
[CrossRef]

2001 (2)

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

2000 (1)

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

1997 (1)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg Gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

1994 (1)

S. Shao and M. Kao, "WDM coding for high capacity lightwave systems," J. Lightwave Technol. 12, 137-148 (1994).
[CrossRef]

Ahderom, S.

S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[CrossRef]

Alameh, K. E.

M Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006).
[CrossRef]

M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto VLSI processors," Opt. Express 14, 6823-6836 (2006).
[CrossRef] [PubMed]

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
[CrossRef]

S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[CrossRef]

Alameh, K.E.

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

Al-Begain, K.

Aljada, M

Aljada, M.

Angelopoulous, I.

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

Au, A. A

Avramopoulos, H.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Bannister, J.

Bintjas, C.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Bloom, L.

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

Cao, J.

Cardakli, M.

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

Chung, I.-S.

Crossland, W. A.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
[CrossRef]

Eggleton, B. J.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg Gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Eshraghian, K.

S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[CrossRef]

Feinberg, J.

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

Glesk, I.

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

Grubsky, V.

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

Guekos, G.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Hauer, M. C.

J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003).
[CrossRef]

M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A Au, H.P. Lee, D. S. Starodubov, and A. E. Willner, "Optically assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators," J. Lightwave Technol. 21, 2765-2778 (2003).
[CrossRef]

Hernandez, V. J.

Jeon, M. Y.

Kalyvas, M.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Kao, M.

S. Shao and M. Kao, "WDM coding for high capacity lightwave systems," J. Lightwave Technol. 12, 137-148 (1994).
[CrossRef]

Kumar, S.

Lee, H.P.

Lee, Y.-T.

Leligou, N.

Lin, C. H.

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg Gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Lyons, E. R.

Matrakidis, C.

McGeehan, J. E.

M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A Au, H.P. Lee, D. S. Starodubov, and A. E. Willner, "Optically assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators," J. Lightwave Technol. 21, 2765-2778 (2003).
[CrossRef]

J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003).
[CrossRef]

Mueller, U.

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

Pan, Z.

Parker, M. C.

M. C. Parker and S. D. Walker, "Arrayed waveguide gratings, fiber bragg gratings, and photonic crystal: an isomorphic Fourier transform light propagation analysis," IEEE J. Sel. Top. Quantum Electron. 8, 1158-1167 (2002).
[CrossRef]

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg Gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).
[CrossRef]

Pleros, N.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Pountourakis, I.

C. Skoufis, S. Sygletos, N. Leligou, C. Matrakidis, I. Pountourakis, and A. Stavdas, "Data-centric networking using multiwavelength headers/labels in packet-over-WDM networks: A comparative study," J. Lightwave Technol. 21, 2110 - 2122 (2003).
[CrossRef]

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

Prucnal, P.

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

Raisi, M.

S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[CrossRef]

Robertson, R.

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

Runser, R.

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

Sahin, A. B.

J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003).
[CrossRef]

Shao, S.

S. Shao and M. Kao, "WDM coding for high capacity lightwave systems," J. Lightwave Technol. 12, 137-148 (1994).
[CrossRef]

Skoufis, C.

C. Skoufis, S. Sygletos, N. Leligou, C. Matrakidis, I. Pountourakis, and A. Stavdas, "Data-centric networking using multiwavelength headers/labels in packet-over-WDM networks: A comparative study," J. Lightwave Technol. 21, 2110 - 2122 (2003).
[CrossRef]

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

Starodubov, D.

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

Starodubov, D. S.

Stassinopolous, G.

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

Stavdas, A.

C. Skoufis, S. Sygletos, N. Leligou, C. Matrakidis, I. Pountourakis, and A. Stavdas, "Data-centric networking using multiwavelength headers/labels in packet-over-WDM networks: A comparative study," J. Lightwave Technol. 21, 2110 - 2122 (2003).
[CrossRef]

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

Sygletos, S.

Theophilopoulos, G.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Touch, J. D.

Walker, S. D.

M. C. Parker and S. D. Walker, "Arrayed waveguide gratings, fiber bragg gratings, and photonic crystal: an isomorphic Fourier transform light propagation analysis," IEEE J. Sel. Top. Quantum Electron. 8, 1158-1167 (2002).
[CrossRef]

Wang, B.

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

Wang, Z.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
[CrossRef]

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

Willner, A.

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

Willner, A. E.

J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003).
[CrossRef]

M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A Au, H.P. Lee, D. S. Starodubov, and A. E. Willner, "Optically assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators," J. Lightwave Technol. 21, 2765-2778 (2003).
[CrossRef]

Yiannopoulos, K.

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

Yoo, S. J. B.

Zheng, R.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
[CrossRef]

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

Zhou, D.

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

Zhu, Z.

Electron. Lett (1)

Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. C. Parker and S. D. Walker, "Arrayed waveguide gratings, fiber bragg gratings, and photonic crystal: an isomorphic Fourier transform light propagation analysis," IEEE J. Sel. Top. Quantum Electron. 8, 1158-1167 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001).
[CrossRef]

J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003).
[CrossRef]

C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002).
[CrossRef]

M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000).
[CrossRef]

S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003).
[CrossRef]

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (1)

Photonic Network Commun. (1)

A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001).
[CrossRef]

Other (5)

A. Okada, "All-optical packet routing in AWG-based wavelength routing networks using an out-of-band optical label," in Proceedings of OFC’02, (Washington DC, 2002), pp. 213 - 215.

N. Wada, H. Harai, W. Chujo, and F. Kubota, "Photonic packet routing based on multi-wavelength label switching using fiber Bragg gratings," in Proceedings of ECOC, (Munich 2000).

N. Wada, H. Harai, W. Chujo, and F. Kubota, "Multi-hop variable length photonic packet routing based on multi-wavelength label switching waveband routing, and label swapping," in Proceedings of OFC (2002), pp. 216-217.

H. L. Lee and D. Simeonidou, "Novel optical packet header decoding via cross-correlation," in Proceedings of Photonics Switching (2001), pp. 66-67.

K. Chan, F. Tong, C. K Chan, L. K. Chen, and W. Hung, "An all-optical packet header recognition scheme for self-routing packet networks," in Proceedings of OFC2002, (2002), pp. 284-285.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Opto-VLSI processor structure and illustration of optical beam steering.

Fig. 2.
Fig. 2.

Multiwavelength node structures using FBG arrays and Opto-VLSI processor to construct the correlator bank.

Fig. 3.
Fig. 3.

Experimental setup for the multi-wavelength bit-pattern recognition

Fig. 4.
Fig. 4.

(a) Wavelengths reflected off the first FBG with a wavelength profile matches 1011 bit pattern. (b) Wavelength profile reflected off the second FBG mismatching 1011 bit pattern.

Fig. 5.
Fig. 5.

Measured output waveform (a) when the wavelength profile matches the input bit pattern 1011(autocorrelation). (b) When the wavelength profile does not match the input bit pattern 1011 (cross-correlation).

Fig. 6.
Fig. 6.

Measured output waveform (a) When the wavelengths profile does not match the input bit pattern 1101 (cross-correlation). (b) When the wavelengths profile matches the input bit pattern 1101(autocorrelation).

Fig. 7.
Fig. 7.

Experiment setup for bit pattern recognition using an Opto-VLSI processor.

Fig. 8.
Fig. 8.

(a). Digital Phase hologram loaded on the Opto-VLSI processor to generate 1011 wavelength profile, (b) wavelength profile that matches the optical bit pattern 1011.

Fig. 9.
Fig. 9.

Measured output waveform, (a) when the bit pattern matches the wavelength profile (autocorrelation). (b) When the bit pattern mismatches the wavelength profile (cross correlation).

Fig. 10.
Fig. 10.

(a). the loaded digital phase hologram to generate 1101 wavelength profile. (b). Wavelength profile that matches 1101 bit pattern. (c). The measured output waveform (autocorrelation)

Metrics