Abstract

We present a quantitative study on the fabrication of microlenses using a low-cost polymer dispending technique. Our method is based on the use of a silicon micro-cantilever robotized spotter system. We first give a detailed description of the technique. In a second part, the fabricated microlenses are fully characterized by means of SEM (Scanning Electron Microscope), AFM (Atomic Force Microscopy) non contact optical profilometry and Mach-Zehnder interferometry. Diameters in the range [25–130μm] are obtained with an average surface roughness of 2.02nm. Curvature radii, focal lengths as well as aberrations are also measured for the first time: the fabricated microlenses present focal lengths in the range [55–181μm] and exhibit high optical quality only limited by diffraction behaviour with RMS aberration lower than λ/14.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, “Micro-Optics, Elements, Systems and Applications,” (Taylor and Francis, London, 1997).
  2. H Ottevaereet al., “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8, S407–S429 (2006).
    [Crossref]
  3. Z. Popovic et al., “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [Crossref] [PubMed]
  4. H. Ottevaere et al, “Two dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A: Pure Appl. Opt. 4, S22–S28 (2002).
    [Crossref]
  5. P. Rutheret al., “Fabrication and characterization of microlenses realized by a modified LIGA process,” Pure Appl. Opt. 6, 643–653 (1997).
    [Crossref]
  6. C. Croutxé-Barghornet al., “Fabrication of microlenses by direct photo-induced crosslinkikng polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
    [Crossref]
  7. D. L. MacFarlaneet al., “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett.,  6, n°9, (1994).
    [Crossref]
  8. A. Braueur et al., “Application oriented complex polymer micro optics,” Microsyst. Technol. 9, Springer-Verlag, 304–307 (2003).
    [Crossref]
  9. K. Naessenset al., “Direct writing of microlenses in polycarbonate with excimer laser ablation,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
  10. M. T. Galeet al., “Fabrication of continuous relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
    [Crossref]
  11. E.-B. Kleyet al., “Realization of micro-optic and integrated optic components by electron-beam-lithographic surface profiling and ion exange in glass,” Int. J. Optoelectron. 8, 513–527 (1993).
  12. M. Sokuler and L. A. Gheber, “Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications,” Nano Lett. 6, 848–853 (2006).
    [Crossref] [PubMed]
  13. V. Bardinalet al., “Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem,” Proc. SPIE 6185, 618510 (2006).
    [Crossref]
  14. P. Belaubreet al., “Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples,” Sens.Acta. A: Physical,  110, 130–135 (2004).
    [Crossref]
  15. B. Vialletet al., “Nanoimprint process using epoxy-siloxane low viscosity pre-polymer,” J. Vac. Sci. Technol. B,  23, 72–75 (2005).
    [Crossref]
  16. T. Leïchléet al., “A Closed-loop MEMS-based Spotter integrating position sensor with nanometric precision for the control of droplet uniformity,” in Proceedings of the 1st IEEE International conference on Nano/Micro Engineered and Molecular Systems. (Institute of Electrical and Electronics Engineers, Zhuhai, China.2006)
  17. H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,, Encyclopedia of Modern Optics,  4, pp. 21–43, ed ( Robert D. Guenther, Duncan G. Steel, and Leopold Bayvel, Elsevier, Oxford, 2004).
  18. A. Sayahet al., “Micro-replication of optical lenses in glass using a novel sol gel technology,” in Proceedings of MEMS 2002, 15th International Conference on Micro Electro Mechanical Systems, 516–519 (Las Vegas, 2002).
  19. S. Sinzinger and J. Jahns, “Optical components with small dimensions,” Microoptics (Wiley-VCH, Weinheim, 1999).

2006 (3)

M. Sokuler and L. A. Gheber, “Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications,” Nano Lett. 6, 848–853 (2006).
[Crossref] [PubMed]

V. Bardinalet al., “Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem,” Proc. SPIE 6185, 618510 (2006).
[Crossref]

H Ottevaereet al., “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8, S407–S429 (2006).
[Crossref]

2005 (1)

B. Vialletet al., “Nanoimprint process using epoxy-siloxane low viscosity pre-polymer,” J. Vac. Sci. Technol. B,  23, 72–75 (2005).
[Crossref]

2004 (2)

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,, Encyclopedia of Modern Optics,  4, pp. 21–43, ed ( Robert D. Guenther, Duncan G. Steel, and Leopold Bayvel, Elsevier, Oxford, 2004).

P. Belaubreet al., “Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples,” Sens.Acta. A: Physical,  110, 130–135 (2004).
[Crossref]

2003 (1)

A. Braueur et al., “Application oriented complex polymer micro optics,” Microsyst. Technol. 9, Springer-Verlag, 304–307 (2003).
[Crossref]

2002 (1)

H. Ottevaere et al, “Two dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A: Pure Appl. Opt. 4, S22–S28 (2002).
[Crossref]

2000 (1)

C. Croutxé-Barghornet al., “Fabrication of microlenses by direct photo-induced crosslinkikng polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[Crossref]

1997 (1)

P. Rutheret al., “Fabrication and characterization of microlenses realized by a modified LIGA process,” Pure Appl. Opt. 6, 643–653 (1997).
[Crossref]

1994 (3)

D. L. MacFarlaneet al., “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett.,  6, n°9, (1994).
[Crossref]

K. Naessenset al., “Direct writing of microlenses in polycarbonate with excimer laser ablation,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).

M. T. Galeet al., “Fabrication of continuous relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[Crossref]

1993 (1)

E.-B. Kleyet al., “Realization of micro-optic and integrated optic components by electron-beam-lithographic surface profiling and ion exange in glass,” Int. J. Optoelectron. 8, 513–527 (1993).

1988 (1)

Bardinal, V.

V. Bardinalet al., “Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem,” Proc. SPIE 6185, 618510 (2006).
[Crossref]

Belaubre, P.

P. Belaubreet al., “Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples,” Sens.Acta. A: Physical,  110, 130–135 (2004).
[Crossref]

Braueur, A.

A. Braueur et al., “Application oriented complex polymer micro optics,” Microsyst. Technol. 9, Springer-Verlag, 304–307 (2003).
[Crossref]

Croutxé-Barghorn, C.

C. Croutxé-Barghornet al., “Fabrication of microlenses by direct photo-induced crosslinkikng polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[Crossref]

Gale, M. T.

M. T. Galeet al., “Fabrication of continuous relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[Crossref]

Gheber, L. A.

M. Sokuler and L. A. Gheber, “Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications,” Nano Lett. 6, 848–853 (2006).
[Crossref] [PubMed]

Herzig, H. P.

H. P. Herzig, “Micro-Optics, Elements, Systems and Applications,” (Taylor and Francis, London, 1997).

Jahns, J.

S. Sinzinger and J. Jahns, “Optical components with small dimensions,” Microoptics (Wiley-VCH, Weinheim, 1999).

Kley, E.-B.

E.-B. Kleyet al., “Realization of micro-optic and integrated optic components by electron-beam-lithographic surface profiling and ion exange in glass,” Int. J. Optoelectron. 8, 513–527 (1993).

Leïchlé, T.

T. Leïchléet al., “A Closed-loop MEMS-based Spotter integrating position sensor with nanometric precision for the control of droplet uniformity,” in Proceedings of the 1st IEEE International conference on Nano/Micro Engineered and Molecular Systems. (Institute of Electrical and Electronics Engineers, Zhuhai, China.2006)

MacFarlane, D. L.

D. L. MacFarlaneet al., “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett.,  6, n°9, (1994).
[Crossref]

Naessens, K.

K. Naessenset al., “Direct writing of microlenses in polycarbonate with excimer laser ablation,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).

Ottevaere, H

H Ottevaereet al., “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8, S407–S429 (2006).
[Crossref]

Ottevaere, H.

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,, Encyclopedia of Modern Optics,  4, pp. 21–43, ed ( Robert D. Guenther, Duncan G. Steel, and Leopold Bayvel, Elsevier, Oxford, 2004).

H. Ottevaere et al, “Two dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A: Pure Appl. Opt. 4, S22–S28 (2002).
[Crossref]

Popovic, Z.

Ruther, P.

P. Rutheret al., “Fabrication and characterization of microlenses realized by a modified LIGA process,” Pure Appl. Opt. 6, 643–653 (1997).
[Crossref]

Sayah, A.

A. Sayahet al., “Micro-replication of optical lenses in glass using a novel sol gel technology,” in Proceedings of MEMS 2002, 15th International Conference on Micro Electro Mechanical Systems, 516–519 (Las Vegas, 2002).

Sinzinger, S.

S. Sinzinger and J. Jahns, “Optical components with small dimensions,” Microoptics (Wiley-VCH, Weinheim, 1999).

Sokuler, M.

M. Sokuler and L. A. Gheber, “Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications,” Nano Lett. 6, 848–853 (2006).
[Crossref] [PubMed]

Thienpont, H.

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,, Encyclopedia of Modern Optics,  4, pp. 21–43, ed ( Robert D. Guenther, Duncan G. Steel, and Leopold Bayvel, Elsevier, Oxford, 2004).

Viallet, B.

B. Vialletet al., “Nanoimprint process using epoxy-siloxane low viscosity pre-polymer,” J. Vac. Sci. Technol. B,  23, 72–75 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

C. Croutxé-Barghornet al., “Fabrication of microlenses by direct photo-induced crosslinkikng polymerization,” Appl. Surf. Sci. 168, 89–91 (2000).
[Crossref]

Encyclopedia of Modern Optics (1)

H. Ottevaere and H. Thienpont, “Refractive optical microlenses: an introduction to nomenclature and characterization techniques,, Encyclopedia of Modern Optics,  4, pp. 21–43, ed ( Robert D. Guenther, Duncan G. Steel, and Leopold Bayvel, Elsevier, Oxford, 2004).

IEEE Photon. Technol. Lett. (2)

D. L. MacFarlaneet al., “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett.,  6, n°9, (1994).
[Crossref]

K. Naessenset al., “Direct writing of microlenses in polycarbonate with excimer laser ablation,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).

Int. J. Optoelectron. (1)

E.-B. Kleyet al., “Realization of micro-optic and integrated optic components by electron-beam-lithographic surface profiling and ion exange in glass,” Int. J. Optoelectron. 8, 513–527 (1993).

J. Opt. A: Pure Appl. Opt. (2)

H. Ottevaere et al, “Two dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A: Pure Appl. Opt. 4, S22–S28 (2002).
[Crossref]

H Ottevaereet al., “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8, S407–S429 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

B. Vialletet al., “Nanoimprint process using epoxy-siloxane low viscosity pre-polymer,” J. Vac. Sci. Technol. B,  23, 72–75 (2005).
[Crossref]

Microsyst. Technol. (1)

A. Braueur et al., “Application oriented complex polymer micro optics,” Microsyst. Technol. 9, Springer-Verlag, 304–307 (2003).
[Crossref]

Nano Lett. (1)

M. Sokuler and L. A. Gheber, “Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications,” Nano Lett. 6, 848–853 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

M. T. Galeet al., “Fabrication of continuous relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[Crossref]

Proc. SPIE (1)

V. Bardinalet al., “Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem,” Proc. SPIE 6185, 618510 (2006).
[Crossref]

Pure Appl. Opt. (1)

P. Rutheret al., “Fabrication and characterization of microlenses realized by a modified LIGA process,” Pure Appl. Opt. 6, 643–653 (1997).
[Crossref]

Sens.Acta. A: Physical (1)

P. Belaubreet al., “Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples,” Sens.Acta. A: Physical,  110, 130–135 (2004).
[Crossref]

Other (4)

T. Leïchléet al., “A Closed-loop MEMS-based Spotter integrating position sensor with nanometric precision for the control of droplet uniformity,” in Proceedings of the 1st IEEE International conference on Nano/Micro Engineered and Molecular Systems. (Institute of Electrical and Electronics Engineers, Zhuhai, China.2006)

A. Sayahet al., “Micro-replication of optical lenses in glass using a novel sol gel technology,” in Proceedings of MEMS 2002, 15th International Conference on Micro Electro Mechanical Systems, 516–519 (Las Vegas, 2002).

S. Sinzinger and J. Jahns, “Optical components with small dimensions,” Microoptics (Wiley-VCH, Weinheim, 1999).

H. P. Herzig, “Micro-Optics, Elements, Systems and Applications,” (Taylor and Francis, London, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Principle of droplet deposition using the robotized silicon-cantilever deposition system. (b) Photograph of the cantilevers and liquid drops at the surface during the deposition process.

Fig. 2.
Fig. 2.

(a). SEM (Scanning Electron Microscope) view of three microlenses of different size deposited with the MEMS-based spotter. (b) Influence of the contact time on lens diameter.

Fig. 3.
Fig. 3.

(a). SEM image of a single 27μm-diameter lens (b) SEM image of an array of identical microlenses (diameter: 120μm vertical pitch: 250μm, horizontal pitch: 450μm).

Fig. 4.
Fig. 4.

Surface profiles of a 51.2μm-diameter lens obtained with a non-contact optical profiler and corresponding circular fits performed along x and y axes.

Fig. 5.
Fig. 5.

AFM characterization of the top surface (500nm×500nm) of a 27μm-diameter microlens.

Fig. 6.
Fig. 6.

Focal lengths as a function of the lens diameter measured by optical microscopy (open circles) and by the transmission Mach-Zehnder interferometer (square dots).

Fig. 7.
Fig. 7.

Zernike polynomial fitted wavefront aberrations (lambda) for a 73μm-diameter lens obtained with a transmission Mach-Zehnder interferometer.

Tables (2)

Tables Icon

Table 1 Vertical and horizontal diameters, sags measured with a non contact optical profilometer as a function of contact time. Curvature radii calculated from the profiles and directly given by circular fits are also compared.

Tables Icon

Table 2 Focal lengths, f-numbers, RMS and PV aberrations (lambda) obtained for different lens diameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = 1 2 h ( D 2 4 + h 2 )
θ c = arcsin ( D 2 R )

Metrics