Abstract

We report on an all-fiber femtosecond Ytterbium laser without dispersion compensation operating in the similariton pulse regime. The oscillator was mode-locked with a saturable Bragg reflector along with nonlinear polarization evolution. A pulse energy of 0.8 nJ was achieved with a pulse duration of 10 ps. The pulses could be externally dechirped to 627fs which was within 8.7% of the Fourier transform limited pulse duration. The realized oscillator combines compact size, high stability and alignment-free operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92,213902 (2004).
    [CrossRef] [PubMed]
  2. J.R. Buckley, F.W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber laser with energies above 10 nJ," Opt. Lett. 30,1888-1890 (2005).
    [CrossRef] [PubMed]
  3. H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
    [CrossRef]
  4. H. Lim, F. Ö. Ilday, and F. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10,1497-1502 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1497.
    [PubMed]
  5. A. Ruehl, O. Prochnow,M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with photonic bandgap fiber for dispersion control," Opt. Lett. 32,1084-1086 (2007).
    [CrossRef] [PubMed]
  6. A. Isomäki and O.G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14,9238-9243 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9238.
    [CrossRef] [PubMed]
  7. A. Isomäki and O.G. Okhotnikov, "All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber," Opt. Express 14,4368-4373 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4368.
    [CrossRef] [PubMed]
  8. S. Ramachandran, S. Ghalmi, J.W. Nicholson,M.F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31,2532-2534 (2006).
    [CrossRef] [PubMed]
  9. I. Hartl, G. Imeshev, G.C. Cho, and M.E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," in Conference on Laser and Electro-Optics, Cleo 2005 (Optical Society of America, 2005), paper CThG1.
  10. A. Chong, J. Buckley,W. Renninger, and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14,10095-10100 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-10095.
    [CrossRef] [PubMed]
  11. P. Adel, M. Auerbach, C. Fallnich, and H. Welling, "Super-stretched, mode-locked Yb3+-fiber laser with 33 nm bandwidth and 56 nJ pulse energy," in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, Washington DC, 2001), pp. 221-223.
  12. R. Herda and O.G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror," IEEE J. Quantum Electron. 40,893-899 (2004).
    [CrossRef]
  13. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
    [CrossRef]
  14. Datasheet of SAM-1040-40-x, Batop GmbH, http://www.batop.de.
  15. H.A. Haus, E.P. Ippen, and K. Tamura, "Additive pulse mode locking in fiber lasers," IEEE J. Quantum Electron. 30,200-208 (1994).
    [CrossRef]
  16. M.E. Fermann, D. Harter, J.D. Minelly, and G.G. Vienne, "Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses," Opt. Lett. 21,967-979 (1996).
    [CrossRef] [PubMed]
  17. S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
    [CrossRef]
  18. A. Ruehl, O. Prochnow, D. Wandt, and D. Kracht, "Photonic bandgap fiber for dispersion management of similaritons around 1 µm," in Conference on Laser and Electro-Optics, Cleo 2006 (Optical Society of America, 2006), paper JWB68.

2007

2006

2005

2004

F. Ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92,213902 (2004).
[CrossRef] [PubMed]

R. Herda and O.G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror," IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

2002

1997

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

1996

1995

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
[CrossRef]

1994

H.A. Haus, E.P. Ippen, and K. Tamura, "Additive pulse mode locking in fiber lasers," IEEE J. Quantum Electron. 30,200-208 (1994).
[CrossRef]

Boehm, M.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Buckley, J.

Buckley, J.R.

J.R. Buckley, F.W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber laser with energies above 10 nJ," Opt. Lett. 30,1888-1890 (2005).
[CrossRef] [PubMed]

F. Ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92,213902 (2004).
[CrossRef] [PubMed]

Burgoyne, B.

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Burk, M.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Chong, A.

Clark, W.G.

F. Ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92,213902 (2004).
[CrossRef] [PubMed]

Dimarcello, F. V.

Engelbrecht, M.

Fermann, M.E.

Fluck, R.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Ghalmi, S.

Godbout, N.

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Harter, D.

Haus, H.A.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
[CrossRef]

H.A. Haus, E.P. Ippen, and K. Tamura, "Additive pulse mode locking in fiber lasers," IEEE J. Quantum Electron. 30,200-208 (1994).
[CrossRef]

Herda, R.

R. Herda and O.G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror," IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

Ilday, F. Ö.

Ippen, E.P.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
[CrossRef]

H.A. Haus, E.P. Ippen, and K. Tamura, "Additive pulse mode locking in fiber lasers," IEEE J. Quantum Electron. 30,200-208 (1994).
[CrossRef]

Isomäki, A.

Jung, I.D.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Keller, U.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Kracht, D.

A. Ruehl, O. Prochnow,M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with photonic bandgap fiber for dispersion control," Opt. Lett. 32,1084-1086 (2007).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Lacroix, S.

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Leuchs, G.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Lim, H.

Mikulla, B.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Minelly, J.D.

Monberg, E.

Nelson, L.E.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
[CrossRef]

Nicholson, J.W.

Okhotnikov, O.G.

Prochnow, O.

A. Ruehl, O. Prochnow,M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with photonic bandgap fiber for dispersion control," Opt. Lett. 32,1084-1086 (2007).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Ramachandran, S.

Renninger, W.

Ruehl, A.

A. Ruehl, O. Prochnow,M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with photonic bandgap fiber for dispersion control," Opt. Lett. 32,1084-1086 (2007).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Sizmann, A.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Sosnowski, T.

Spaelter, S.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Tamura, K.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
[CrossRef]

H.A. Haus, E.P. Ippen, and K. Tamura, "Additive pulse mode locking in fiber lasers," IEEE J. Quantum Electron. 30,200-208 (1994).
[CrossRef]

Vienne, G.G.

Wandt, D.

A. Ruehl, O. Prochnow,M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with photonic bandgap fiber for dispersion control," Opt. Lett. 32,1084-1086 (2007).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 18,2734-2736 (2006).
[CrossRef]

Wise, F.

Wise, F.W.

J.R. Buckley, F.W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber laser with energies above 10 nJ," Opt. Lett. 30,1888-1890 (2005).
[CrossRef] [PubMed]

F. Ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92,213902 (2004).
[CrossRef] [PubMed]

Wisk, P.

Yan, M.F.

Zhang, G.

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

Appl. Phys. B

S. Spaelter, M. Boehm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang, U. Keller, A. Sizmann, and G. Leuchs, "Self-starting soliton-modelocked femtosecond Cr(4+):YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B 65, 335-338 (1997).
[CrossRef]

IEEE J. Quantum Electron.

H.A. Haus, E.P. Ippen, and K. Tamura, "Additive pulse mode locking in fiber lasers," IEEE J. Quantum Electron. 30,200-208 (1994).
[CrossRef]

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment," IEEE J. Quantum Electron. 11,591-598 (1995).
[CrossRef]

R. Herda and O.G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror," IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92,213902 (2004).
[CrossRef] [PubMed]

Other

A. Ruehl, O. Prochnow, D. Wandt, and D. Kracht, "Photonic bandgap fiber for dispersion management of similaritons around 1 µm," in Conference on Laser and Electro-Optics, Cleo 2006 (Optical Society of America, 2006), paper JWB68.

Datasheet of SAM-1040-40-x, Batop GmbH, http://www.batop.de.

I. Hartl, G. Imeshev, G.C. Cho, and M.E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," in Conference on Laser and Electro-Optics, Cleo 2005 (Optical Society of America, 2005), paper CThG1.

P. Adel, M. Auerbach, C. Fallnich, and H. Welling, "Super-stretched, mode-locked Yb3+-fiber laser with 33 nm bandwidth and 56 nJ pulse energy," in Advanced Solid-State Lasers, OSA Technical Digest (Optical Society of America, Washington DC, 2001), pp. 221-223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the fiber ring cavity. PC: polarization controller, SBR: fiber coupled saturable Bragg-reflector, WDM: wavelength division multiplexer; ISO: fiber coupled isolator, PBS: fiber coupled polarization beam splitter.

Fig. 2.
Fig. 2.

(a) Measured output power in respect to pump power with a mode-locking threshold of 145 mW (left) and (b) measured output spectrum of a similariton on a logarithmic scale and a linear scale (inset) centered at 1028 nm with a FWHM of 4.2 nm.

Fig. 3.
Fig. 3.

(a) Measured photodetector signal and (b) RF-spectrum from 0 MHz to 1 GHz.

Fig. 4.
Fig. 4.

(a) Measured second order autocorrelation of the output pulses with an autocorrelation width of 14 ps, of the dechirped output pulses with an autocorrelation width of 873 fs ((b), solid curve) and the calculated autocorrelation function of the transform limited pulse ((b), dashed curve).

Metrics