Abstract

We propose a multi-port, multi-wavelength supervisory system for the in-service transmission line monitoring of a bidirectional WDM-PON system. Identifying unique requirements for the performance monitoring of a real field WDM-PON system, we define the architecture for the supervisory system and utilize the most up-to-date technologies (Simplex coding, tunable source, and optical switches) to demonstrate a successful interrogation of a transmission line up to 16 ports × 32 nodes (512 user) capacity. Monitoring of individual branch traces up to 60 km was achieved with the application of a 127-bit simplex code corresponding to a 7.5dB SNR coding gain. In-service transmission experiments showed negligible penalty from the monitoring system to the transmission signal quality, at a 2.5Gbps / 125Mbps (down / up stream) data rate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Kim, "On the evolution of PON-based FTTH solutions," Inform. Sci. 149, 21-30 (2003).
    [CrossRef]
  2. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," J. Lightwave Technol. 22, 2582-2591 (2004).
    [CrossRef]
  3. G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
    [CrossRef]
  4. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, Upper Saddle River, NJ, 1998), Chap. 11.
  5. K. Tanaka, H. Izumita, N. Tomita and Y. Inoue, "In-service individual line monitoring and a method for compensating for the temperature-dependent channel drift of a WDM-PON containing an AWGR using a 1.6um tunable OTDR," in European Conference on Optical Communications (ECOC’97), Paper 448, pp. 295-298.
  6. U. Hilbk, M. Burmeister, B. Hoen, T. Hermes, J. Saniter, and F. J. Westphal, "Selective OTDR measurements at the central office of individual fiber link in a PON," in Optical Fiber Communication Conference and Exhibit, Technical Digest (Optical Society of America, 1997), Paper Tuk3.
  7. P. M. Kjeidsen, M. Obro, J. S. Madsen, and S. K. Nielsen, "Bit-error-rate degradation due to on-line OTDR monitoring above 1.6um," in Optical Fiber Communication Conference and Exhibit, Technical Digest (Optical Society of America, 1997), Paper TuT1.
  8. M. D. Jones, "Using simplex codes to improve OTDR sensitivity," IEEE Photon. Technol. Lett. 5, 822-824 (1993).
    [CrossRef]
  9. D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
    [CrossRef]
  10. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
    [CrossRef]
  11. D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
    [CrossRef]
  12. H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
    [CrossRef]

2006 (2)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
[CrossRef]

2005 (2)

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. S. Kim, "On the evolution of PON-based FTTH solutions," Inform. Sci. 149, 21-30 (2003).
[CrossRef]

1993 (1)

M. D. Jones, "Using simplex codes to improve OTDR sensitivity," IEEE Photon. Technol. Lett. 5, 822-824 (1993).
[CrossRef]

1992 (1)

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
[CrossRef]

Ahn, J. G.

Bolognini, G.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

Cho, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

Furukawa, S.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
[CrossRef]

Geib, K. M.

G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
[CrossRef]

Izumita, H.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
[CrossRef]

Jeong, K. T.

Jones, M. D.

M. D. Jones, "Using simplex codes to improve OTDR sensitivity," IEEE Photon. Technol. Lett. 5, 822-824 (1993).
[CrossRef]

Keeler, G. A.

G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
[CrossRef]

Kim, K. S.

K. S. Kim, "On the evolution of PON-based FTTH solutions," Inform. Sci. 149, 21-30 (2003).
[CrossRef]

Kim, N. Y.

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

Kim, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

Koyamada, Y.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
[CrossRef]

Lee, C. H.

Lee, D.

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
[CrossRef]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

Park, H. J.

Park, J.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

Park, N.

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
[CrossRef]

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

Park, S. J.

Pasaquale, F. D.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

Peake, G. M.

G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
[CrossRef]

Sankawa, I.

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
[CrossRef]

Serkland, D. K.

G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
[CrossRef]

Song, K. H.

Yoon, H.

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, "Optimization of SNR Improvement in the Non-coherent OTDR based on Simplex Codes," J. Lightwave Technol. 24, 322-328 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

Electron. Lett. (1)

G. A. Keeler, D. K. Serkland, K. M. Geib, and G. M. Peake, "In situ OTDR for low-cost optical networks using singlemode 850nm VCSEL," Electron. Lett. 41, 819-820 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasaquale, and N. Park, "Raman-based distributed Temperature Sensor with Simplex Coding and Link Optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006).
[CrossRef]

D. Lee, H. Yoon, P. Kim, J. Park, N. Y. Kim, and N. Park, "SNR Enhancement of OTDR Using Biorthogonal Codes and Generalized Inverses," IEEE Photon. Technol. Lett. 17, 163-165 (2005).
[CrossRef]

H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, "Fading noise reduction in coherent OTDR," IEEE Photon. Technol. Lett. 4, 201-203 (1992).
[CrossRef]

M. D. Jones, "Using simplex codes to improve OTDR sensitivity," IEEE Photon. Technol. Lett. 5, 822-824 (1993).
[CrossRef]

Inform. Sci. (1)

K. S. Kim, "On the evolution of PON-based FTTH solutions," Inform. Sci. 149, 21-30 (2003).
[CrossRef]

J. Lightwave Technol. (2)

Other (4)

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, Upper Saddle River, NJ, 1998), Chap. 11.

K. Tanaka, H. Izumita, N. Tomita and Y. Inoue, "In-service individual line monitoring and a method for compensating for the temperature-dependent channel drift of a WDM-PON containing an AWGR using a 1.6um tunable OTDR," in European Conference on Optical Communications (ECOC’97), Paper 448, pp. 295-298.

U. Hilbk, M. Burmeister, B. Hoen, T. Hermes, J. Saniter, and F. J. Westphal, "Selective OTDR measurements at the central office of individual fiber link in a PON," in Optical Fiber Communication Conference and Exhibit, Technical Digest (Optical Society of America, 1997), Paper Tuk3.

P. M. Kjeidsen, M. Obro, J. S. Madsen, and S. K. Nielsen, "Bit-error-rate degradation due to on-line OTDR monitoring above 1.6um," in Optical Fiber Communication Conference and Exhibit, Technical Digest (Optical Society of America, 1997), Paper TuT1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the supervisory system and experimental setup for in-service monitoring of fiber link faults in a bidirectional WDM-PON system (down-stream signal at the L-band, upstream signal at the C-band, and supervisory system at the S-band)

Fig. 2.
Fig. 2.

Schematic diagram of the board and picture of the constructed surveillance system

Fig. 3.
Fig. 3.

Main window of the PC Graphic User Interface

Fig. 4.
Fig. 4.

Control and measurement option windows

Fig. 5.
Fig. 5.

OTDR traces measured to show multi-port function

Fig. 6.
Fig. 6.

Measured loss traces using conventional OTDR (a, b) and 31-bit coded-OTDR (c, d) (Inset: the first codeword of the 31-bit simplex code pattern as SOA output)

Fig. 7.
Fig. 7.

Link loss traces using a) the conventional OTDR and b) the 127-bit Simplex coded-OTDR for long reach (40km + 20km) application

Fig. 8.
Fig. 8.

BER characteristics of a) downstream (2.5Gbps) and b) upstream (125Mbps) signals. No transmission penalty was observed with the OTDR operation

Metrics