Abstract

We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260–1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh - optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 4B, L383 (2001).
    [CrossRef]
  2. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
    [CrossRef]
  3. V. Almeida, C.A. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  4. Y. Saito, T. Kanaya, A. Nomura, and T. Kano, "Experimental trial of a hollow-core waveguide used as an absorption cell for concentration measurement of NH3 gas with a CO2 laser," Opt. Lett. 18, 2150-2152 (1993).
    [CrossRef] [PubMed]
  5. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  6. C. A. Barrios, "High performance all-optical silicon microswitch," Electron. Lett. 40, 862-863 (2004).
    [CrossRef]
  7. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted Silicon waveguides," Opt. Express 13, 5216-5226 (2005).
    [CrossRef] [PubMed]
  8. T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23, 684-691 (2006).
    [CrossRef]
  9. C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005).
    [CrossRef] [PubMed]
  10. C. A. Barrios, "Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator," IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
    [CrossRef]
  11. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding andconfining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  12. T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]
  13. V. Almeida, R. Panepucci and M- Lipson "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  14. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
    [CrossRef]
  15. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," 13, 1515-1528 (2005).
  16. J. E. Heebner, "Nonlinear optical whispering gallery microresonators for photonics," University of Rochester, Ph.D. Thesis, 2003.
  17. J. Niehusmann, A. Vörckel, and P. H. Bolivar, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
    [CrossRef]
  18. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
    [CrossRef]
  19. T. J. Verdeyen, Laser Electronics. (Englewood Cliffs, NJ, Prentice-Hall, 1995).

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

2006 (2)

C. A. Barrios, "Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator," IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23, 684-691 (2006).
[CrossRef]

2005 (3)

2004 (5)

2003 (1)

2002 (1)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
[CrossRef]

2001 (1)

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh - optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 4B, L383 (2001).
[CrossRef]

1993 (1)

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Almeida, V.

Almeida, V. R.

Baba, T.

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh - optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 4B, L383 (2001).
[CrossRef]

Baehr-Jones, T.

Barrios, C. A.

C. A. Barrios, "Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator," IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
[CrossRef]

C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005).
[CrossRef] [PubMed]

V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
[CrossRef] [PubMed]

C. A. Barrios, "High performance all-optical silicon microswitch," Electron. Lett. 40, 862-863 (2004).
[CrossRef]

Barrios, C.A.

V. Almeida, C.A. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Bolivar, P. H.

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," 13, 1515-1528 (2005).

Dalton, L.

Dalton, L. R.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
[CrossRef]

Fujisawa, T.

Hara, G.

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh - optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 4B, L383 (2001).
[CrossRef]

Hochberg, M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Jen, A. K.-Y.

Johnson, T. J.

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," 13, 1515-1528 (2005).

Kanaya, T.

Kano, T.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Koshiba, M.

Lawson, R.

Liao, Y.

Lipson, M.

Niehusmann, J.

Nomura, A.

Painter, O.

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," 13, 1515-1528 (2005).

Panepucci, R.

V. Almeida, C.A. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

V. Almeida, R. Panepucci and M- Lipson "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

Panepucci, R. R.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Rabiei, P.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Saito, Y.

Sakai, A.

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh - optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 4B, L383 (2001).
[CrossRef]

Scherer, A

T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Scherer, A.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Steier, W. H.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
[CrossRef]

Sullivan, P. A.

Vörckel, A.

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Wang, G.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Xu, Q.

Zhang, C.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Electron. Lett. (1)

C. A. Barrios, "High performance all-optical silicon microswitch," Electron. Lett. 40, 862-863 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. A. Barrios, "Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator," IEEE Photon. Technol. Lett. 18, 2419-2421 (2006).
[CrossRef]

J. Lightw. Technol. (1)

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh - optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 4B, L383 (2001).
[CrossRef]

Nature (1)

V. Almeida, C.A. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Nature Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Other (3)

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," 13, 1515-1528 (2005).

J. E. Heebner, "Nonlinear optical whispering gallery microresonators for photonics," University of Rochester, Ph.D. Thesis, 2003.

T. J. Verdeyen, Laser Electronics. (Englewood Cliffs, NJ, Prentice-Hall, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Schematic cross-sectional view of a silicon nitride/silicon oxide vertical slot-waveguide. b) Calculated electric field (|E2|) distribution of the quasi-TE mode of the slot-waveguide shown in Fig. 1(a). The refractive indexes of silicon nitride and silicon oxide have been assumed to be 2.0 and 1.44, respectively, at an operating wavelength of 1.3 μm.

Fig. 2.
Fig. 2.

Schematic top view diagrams of a slot-waveguide ring resonator (a) and a slot-waveguide Fabry-Perot cavity (b).

Fig. 3.
Fig. 3.

Scanning electron microscope (SEM) top view pictures of fabricated silicon nitride ring (a) and Fabry-Perot (b) slot-waveguide resonators before top cladding deposition. Fig. 3(a) shows the coupling region between the bus slot-waveguide and the ring slot-waveguide. Fig. 3(b) shows a Bragg reflector of a Fabry-Perot cavity and part of the slot-waveguide cavity region.

Fig. 4.
Fig. 4.

Measured normalized output power (solid line) and fit of analytical transfer function (dashed line) of a 70-μm-radius silicon nitride/silicon oxide slot-waveguide ring resonator for the quasi-TE mode. The slot width is 200 nm.

Fig. 5.
Fig. 5.

Measured (hollow symbols) and semi-empirical (solid symbols) values of the group indexes of ring silicon nitride/silicon oxide slot-waveguides for different values of the slot width (wslot) and polarization modes: squared symbols correspond to quasi-TE and circular symbols correspond to quasi-TM. The dashed lines are used to group the data points.

Fig. 6.
Fig. 6.

Measured normalized output power (solid line) and fit of analytical transfer function (dashed line) of a 140-μm-long silicon nitride/silicon oxide slot-waveguide Fabry-Perot cavity for the quasi-TE mode. The slot width is 200 nm and the number of periods of the Bragg reflectors is 30.

Fig. 7.
Fig. 7.

Measured (hollow symbols) and semi-empirical (solid symbols) values of the group indexes of Fabry-Perot silicon nitride/silicon oxide slot-waveguides for different values of the slot width (wslot) and TE polarization. The dashed line is used to group the data points.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Q l = λ 0 λ FWHM = π ra L n g ( 1 ra ) λ 0
n g = n e λ d n e d λ
n g λ 2 ( FSR ) L
1 Q l = 1 Q e + 1 Q i
Q e = 2 Q l 1 T min
Q i = π a L n g ( 1 a ) λ 0
T ring ( λ ) = a 2 + r 2 2 ar cos ( 2 πL n e λ ) 1 + a 2 r 2 2 ar cos ( 2 πL n e λ )
n g ( λ 0 ) = n e ( λ 0 ) λ 0 n e ( λ 1 ) n e ( λ 0 ) λ 1 λ 0
Q FP = λ 0 λ FWHM = π L cav n g RA ( 1 RA ) λ 0
T max = ( 1 R ) 2 A ( 1 RA ) 2
T FP ( λ ) = A ( 1 R ) 2 ( 1 AR ) 2 + 4 AR sin 2 ( 2 π L cav n e λ )

Metrics