Abstract

We report on the creation of micro-patterns in an oriented nematic elastomer (an artificial muscle material) by photopolymerization of surface aligned nematic liquid crystal monomers. We demonstrate that microscopic techniques are able to create accurate patterns in rubber-like liquid crystal materials. Two approaches, based on one and two-photon excitations respectively, are implemented using a microscope-based setup. Due to its high spatial selectivity, the two-photon excitation mode yields finer patterns. Benefitting from the intrinsic, thermally-induced, contractile properties of the material, gratings with variable steps in response to temperature changes were fabricated.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers

Yoshihito Hirota, Yan Ji, Francesca Serra, Ali R. Tajbakhsh, and Eugene M. Terentjev
Opt. Express 16(8) 5320-5331 (2008)

Focus issue introduction: liquid crystal materials for photonic applications

Wei Lee and Shin-Tson Wu
Opt. Mater. Express 1(8) 1585-1587 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81, 1160–1162 (2002).
    [Crossref]
  2. A. Y.-G. Fuh, C.-Y. Tsai, and C.-L. Lu, “Fast optical recording in dye doped polymer dispersed liquid crystal films,” Opt. Lett. 26, 447–449 (2001).
    [Crossref]
  3. M. Y. Shih, A. Shishido, and I. C. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition-substraction,” Opt. Lett. 26, 1140–1142 (2001).
    [Crossref]
  4. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
    [Crossref]
  5. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
    [Crossref]
  6. P.-G. de Gennes, “Réflexions sur un type de polymères nématiques,” C. R. Acad. Sci. Paris, Ser. B 281, 101–103 (1975).
  7. P.-G. de Gennes, “A semi-fast artificial muscle,” C. R. Acad. Sci. Paris, Ser. IIb 324, 343–348 (1997).
  8. M.-H. Li and P. Keller, “Artificial muscles based on liquid crystal elastomers,” Phil. Trans. R. Soc. A 364, 2763–2777 (2006).
    [Crossref] [PubMed]
  9. Y. Yu and T. Ikeda, “Soft actuators based on liquid-crystalline elastomers,” Angew. Chem. Int. Ed. 45, 5416–5418 (2006).
    [Crossref]
  10. D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
    [Crossref]
  11. M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
    [Crossref]
  12. A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
    [Crossref] [PubMed]
  13. A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
    [Crossref]
  14. M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
    [Crossref]
  15. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
    [Crossref]
  16. J. Mertz, “Molecular photodynamics involved in multiphoton excitation fluorescence microscopy,” Eur. Phy. J. D 3, 53–66 (1998).
    [Crossref]
  17. K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
    [Crossref] [PubMed]

2006 (5)

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

M.-H. Li and P. Keller, “Artificial muscles based on liquid crystal elastomers,” Phil. Trans. R. Soc. A 364, 2763–2777 (2006).
[Crossref] [PubMed]

Y. Yu and T. Ikeda, “Soft actuators based on liquid-crystalline elastomers,” Angew. Chem. Int. Ed. 45, 5416–5418 (2006).
[Crossref]

2004 (2)

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

2003 (2)

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
[Crossref]

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

2002 (2)

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81, 1160–1162 (2002).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

2001 (3)

1998 (1)

J. Mertz, “Molecular photodynamics involved in multiphoton excitation fluorescence microscopy,” Eur. Phy. J. D 3, 53–66 (1998).
[Crossref]

1997 (1)

P.-G. de Gennes, “A semi-fast artificial muscle,” C. R. Acad. Sci. Paris, Ser. IIb 324, 343–348 (1997).

1975 (1)

P.-G. de Gennes, “Réflexions sur un type de polymères nématiques,” C. R. Acad. Sci. Paris, Ser. B 281, 101–103 (1975).

Balu, M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Bastiaansen, C. W. M.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

Belfield, K. D.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Brett, M. J.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

Broer, D. J.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

Brunet, M.

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

Buguin, A.

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

Bunning, T. J.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

Crawford, G. P.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

Crégut, O.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Crespi, V. H.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
[Crossref]

de Gennes, P.-G.

P.-G. de Gennes, “A semi-fast artificial muscle,” C. R. Acad. Sci. Paris, Ser. IIb 324, 343–348 (1997).

P.-G. de Gennes, “Réflexions sur un type de polymères nématiques,” C. R. Acad. Sci. Paris, Ser. B 281, 101–103 (1975).

Divliansky, I.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
[Crossref]

Dorkenoo, K. D.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Elias, A. L.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

Fort, A.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Freund, L. B.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

Fuh, A. Y.-G.

Gillot, F.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Gu, M.

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81, 1160–1162 (2002).
[Crossref]

Hagan, D. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Hales, J. M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Harris, K. D.

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

Holliday, K. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
[Crossref]

Ikeda, T.

Y. Yu and T. Ikeda, “Soft actuators based on liquid-crystalline elastomers,” Angew. Chem. Int. Ed. 45, 5416–5418 (2006).
[Crossref]

Jeon, H.

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Keller, P.

M.-H. Li and P. Keller, “Artificial muscles based on liquid crystal elastomers,” Phil. Trans. R. Soc. A 364, 2763–2777 (2006).
[Crossref] [PubMed]

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Khoo, I. C.

Ladoux, B.

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

Leblond, H.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Li, B.

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

Li, M.-H.

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

M.-H. Li and P. Keller, “Artificial muscles based on liquid crystal elastomers,” Phil. Trans. R. Soc. A 364, 2763–2777 (2006).
[Crossref] [PubMed]

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

Lu, C.-L.

Mayer, T. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
[Crossref]

McPhail, D.

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81, 1160–1162 (2002).
[Crossref]

Mertz, J.

J. Mertz, “Molecular photodynamics involved in multiphoton excitation fluorescence microscopy,” Eur. Phy. J. D 3, 53–66 (1998).
[Crossref]

Naciri, J.

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Natarajan, L. V.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

Pink, R.

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Ratna, B. R.

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Schafer, K. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Shenoy, D.

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Shih, M. Y.

Shishido, A.

Silberzan, P.

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

Sonnefraud, Y.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Sousa, M. E.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

Sutherland, R. L.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

Tamlinnd, D.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

Thomsen III, D. L.

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

Tsai, C.-Y.

Van Stryland, E. W.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Wang, X.

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

Yu, Y.

Y. Yu and T. Ikeda, “Soft actuators based on liquid-crystalline elastomers,” Angew. Chem. Int. Ed. 45, 5416–5418 (2006).
[Crossref]

Adv. Mater. (3)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tamlinnd, and T. J. Bunning, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187 (2002).
[Crossref]

M.-H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, “Light-driven side-on nematic elastomer actuator,” Adv. Mater. 15, 569–572 (2003).
[Crossref]

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “islands” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18, 1842–1845 (2006).
[Crossref]

Angew. Chem. Int. Ed. (1)

Y. Yu and T. Ikeda, “Soft actuators based on liquid-crystalline elastomers,” Angew. Chem. Int. Ed. 45, 5416–5418 (2006).
[Crossref]

Appl. Phys. Lett. (2)

D. McPhail and M. Gu, “Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination,” Appl. Phys. Lett. 81, 1160–1162 (2002).
[Crossref]

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82, 1667–1669 (2003).
[Crossref]

C. R. Acad. Sci. Paris, Ser. B (1)

P.-G. de Gennes, “Réflexions sur un type de polymères nématiques,” C. R. Acad. Sci. Paris, Ser. B 281, 101–103 (1975).

C. R. Acad. Sci. Paris, Ser. IIb (1)

P.-G. de Gennes, “A semi-fast artificial muscle,” C. R. Acad. Sci. Paris, Ser. IIb 324, 343–348 (1997).

Eur. Phy. J. D (1)

J. Mertz, “Molecular photodynamics involved in multiphoton excitation fluorescence microscopy,” Eur. Phy. J. D 3, 53–66 (1998).
[Crossref]

J. Am. Chem. Soc. (1)

A. Buguin, M.-H. Li, P. Silberzan, B. Ladoux, and P. Keller, “Micro-actuators: when artificial muscles made of nematic crystal elastomer meet soft lithography,” J. Am. Chem. Soc. 128, 1088–1089 (2006).
[Crossref] [PubMed]

J. Mater. Chem. (1)

A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, and M. J. Brett, “Photopatterned liquid crystalline polymers for microactuators,” J. Mater. Chem. 16, 2903–2912 (2006).
[Crossref]

J. Photochem. Photobiol. A (1)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol. A 162, 497–502 (2004).
[Crossref]

Macromolecules (1)

D. L. Thomsen III, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B. R. Ratna, “Liquid crystal elastomers with mechanical properties of a muscle,” Macromolecules 34, 5868–5875 (2001).
[Crossref]

Opt. Lett. (2)

Phil. Trans. R. Soc. A (1)

M.-H. Li and P. Keller, “Artificial muscles based on liquid crystal elastomers,” Phil. Trans. R. Soc. A 364, 2763–2777 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Chemical structure of the nematic liquid crystal monomer.

Fig. 2.
Fig. 2.

Schematic presentation of the experimental setup based on a confocal microscope. Femtosecond laser (80 MHz at 780 nm) or UV argon laser (365 nm) were used as excitation beams. The sample is placed on a thermally controlled heating stage, mounted on (X, Y, Z) 3D computer controlled translation stages.

Fig. 3.
Fig. 3.

Letter “E” patterns of liquid crystal elastomer produced by UV and two-photon photolithography under microscope (sample cell thickness: 10 μm; microscope objective: numerical aperture 0.45, magnification 50). (a) by UV polymerization at 8 μW.cm-2 in a non-aligned sample. (b) by UV polymerization at 500 mW∙cm-2 in an aligned sample. (c) by two-photon polymerization at 500 mW∙cm-2 in an aligned sample. For observation, polarizers were uncrossed in (a.1), (b.1) and (c.1), and were crossed in (a.2), (b.2) and (c.2). The width of the E-letter is 800 μm. The resolution of two-photon beam is 7 μm, while that of UV beam is around 20 μm. The nematic director orientation is indicated by the arrow. The observation temperature is 82°C.

Fig 4.
Fig 4.

(Avi movie MB) Liquid crystal elastomer with grating pattern created by UV polymerization. The grating pattern was first created by UV light of high energy (80 μW.cm-2) in the aligned monomer sample and a post-polymerization by UV light of low energy (8 μW.cm-2) was then carried out in the whole sample to produce the elastomer film. The sample thickness is 20 μm. The grating step changes reversibly as a function of temperature (from 170 μm at T = 63°C to 120 μm at T = 120°C) due to the thermal contraction of the liquid crystal elastomer along the direction of alignment (indicated by the arrow). The film floats on a thin layer of silicon oil and there is nearly no constraint during the contraction.

Fig. 5.
Fig. 5.

Two-photon 50 μm grating (left) and its diffraction pattern (right) recorded at room temperature.

Metrics