Abstract

The fabrication and characteristics of close-packed lens arrays with a feature size close to the optical diffraction limit are presented in this study. By controlling the size of the submicron nickel rods and the time for reactive dry etching, the hemispherical lens array with a submicron period is made directly on a borosilicate glass. Finite-difference time-domain calculations and optical near-field measurements show that such a lens array can generate a subwavelength optical spot array near the glass surface. Moreover, the spot array periodically appears in the propagation direction. Using this novel optical property, we propose a photolithographic method for the mass-production of multilayer hexagonal structures with a period of 500nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002).
    [CrossRef]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    [CrossRef] [PubMed]
  3. C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
    [CrossRef]
  4. S. Möller and S. R. J. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324.-3327 (2002).
    [CrossRef]
  5. J. Kim, K. H. Jeong, and L. P. Lee," Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005)
    [CrossRef] [PubMed]
  6. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
    [CrossRef]
  7. H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
    [CrossRef] [PubMed]
  8. E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, Spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
    [CrossRef] [PubMed]
  9. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
    [CrossRef]
  10. M. Fritze, M. B. Stern, and P. W. Wyatt," Laser-fabricated glass microlens arrays," Opt. Lett. 23, 141-143 (1998).
    [CrossRef]
  11. M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Opt. Eng. 33, 3547-3551 (1994).
    [CrossRef]
  12. L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston 2000).
  14. H. F. Talbot, "Facts relating to optical science. No. IV," Philos. Mag. 9, 401-407 (1836).
  15. P. K. Wei, Y. C. Chen, and H. L. Chou, "The diffraction induced near-field optical images in Mesoscale Air-Dielectric Structures," J. Opt. Soc. Am. B 20, 1503-1505(2003).
    [CrossRef]
  16. S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
    [CrossRef]
  17. K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
    [CrossRef]
  18. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
    [CrossRef] [PubMed]

2006 (2)

H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
[CrossRef] [PubMed]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

2005 (2)

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

J. Kim, K. H. Jeong, and L. P. Lee," Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005)
[CrossRef] [PubMed]

2004 (2)

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

2003 (4)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

P. K. Wei, Y. C. Chen, and H. L. Chou, "The diffraction induced near-field optical images in Mesoscale Air-Dielectric Structures," J. Opt. Soc. Am. B 20, 1503-1505(2003).
[CrossRef]

K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

2002 (1)

K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002).
[CrossRef]

2000 (1)

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

1998 (1)

1994 (1)

M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Opt. Eng. 33, 3547-3551 (1994).
[CrossRef]

1992 (1)

E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, Spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

1836 (1)

H. F. Talbot, "Facts relating to optical science. No. IV," Philos. Mag. 9, 401-407 (1836).

Abe, T.

L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

Betzig, E.

E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, Spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Chen, Y. C.

Choi, H.

H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
[CrossRef] [PubMed]

Chou, H. L.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Duan, X.M.

K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

Esashi, M.

L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

Fritze, M.

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Jay, T. R.

M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Opt. Eng. 33, 3547-3551 (1994).
[CrossRef]

Jeong, K. H.

Jung, D. Y.

H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
[CrossRef] [PubMed]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Kaneko, K.

K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

Kawata, S.

K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002).
[CrossRef]

Kim, J.

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Lee, L. P.

Li, L.

L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Lu, M. H.

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Madigan, C. F.

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Nam, H. J.

H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
[CrossRef] [PubMed]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Rogers, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Seet, K.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Seet, K. K.

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Stern, M. B.

M. Fritze, M. B. Stern, and P. W. Wyatt," Laser-fabricated glass microlens arrays," Opt. Lett. 23, 141-143 (1998).
[CrossRef]

M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Opt. Eng. 33, 3547-3551 (1994).
[CrossRef]

Sturm, J. C.

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Sun, H. B.

K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002).
[CrossRef]

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Takada, K

K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002).
[CrossRef]

Talbot, H. F.

H. F. Talbot, "Facts relating to optical science. No. IV," Philos. Mag. 9, 401-407 (1836).

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Trautman, J. K.

E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, Spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Völkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Wei, P. K.

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Wyatt, P. W.

Yi, G. R.

H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
[CrossRef] [PubMed]

Appl. Phys. Lett (1)

K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

Langmuir (1)

H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006).
[CrossRef] [PubMed]

Nanotechnology (1)

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Opt. Eng. 33, 3547-3551 (1994).
[CrossRef]

Opt. Lett (1)

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Philos. Mag. (1)

H. F. Talbot, "Facts relating to optical science. No. IV," Philos. Mag. 9, 401-407 (1836).

Science (1)

E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, Spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Other (2)

S. Möller and S. R. J. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324.-3327 (2002).
[CrossRef]

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a.) Anisotropic RIE method for making a microlens array on a glass substrate. The lens array is formed by longitudinally etching through a pre-shaped polymer mask. (b) Isotropic RIE method for making a submicron lens array. Submicron Ni-rod array is used as a hard mask. The submicron lens array is formed due to isotropic etching in the substrate.

Fig. 2.
Fig. 2.

(a). The SEM image of the Ni mask. The mask is composed of a hexagonal nickel rod array with 500nm-period and 150nm-thickness. (b). The SEM image of 30 minutes RIE in a borosilicate glass. A tapered rod array was formed. (c). The SEM image of 60 minutes RIE in a borosilicate glass. A hemispherical lens array was formed. (d). The enlarged image of Fig. 2(c), viewed at a tilt angle of 45°. (e). The SEM image of 90 minutes RIE in a borosilicate glass. Pyramid shape with rough surface was formed. (f). The SEM image of 60 minutes RIE in a fused silica. The etching is highly anisotropic, resulting in a high-aspect-ratio rod array.

Fig. 3.
Fig. 3.

(a). The layout for the FDTD calculations. The array was composed of hemispherical glass lenses with a 250nm radius and a 500nm period. The refractive index was 1.5 for glass and the incident light was 442nm. (b). The calculated optical field distribution at the XZ plane. The lens array shows focusing spots near the lens surface. The spot has a diameter ~250nm close to the diffraction-limit. Note that the spot array appears periodically in the z-direction. (c). The optical field distributions at XY plane at different z positions: 0.5μm, 1μm and 1.5μm from the lens surface. The focusing spots show alternative hexagonal patterns in the propagation direction.

Fig. 4.
Fig. 4.

The XZ plots of the optical distributions for different periods of lens arrays. (a) 300nm-period array. The curvature of lens is too large that most light is confined in the lens. (b) 700nm-period array. The focusing behaviors are similar to the 500nm-period array, but with a longer focusing period in z- direction. (c) 900nm-period array. The curvature of lens is too small to form a tight spot.

Fig. 5.
Fig. 5.

(a). A simple diagram for the setup of a collection-mode NSOM. A 473nm laser was incident into the glass substrate. The optical intensity was collected by a tapered fiber probe. (b) The topographic image of the submicron lens array. (c) The corresponding optical near-field distribution. (d) The measured optical intensity distribution in the XZ plane.

Fig. 6.
Fig. 6.

(a). The setup for photolithography using a submicron lens array as a photomask. (b) The SEM images for developed pattern in the photoresist and cross-section of the hole pattern viewed at 45° tile angle.

Fig. 7.
Fig. 7.

(a). The SEM image of developed PR pattern in a thick photoresist. (b) The cross-section image, viewed at 45° tilt angle. Inset is the enlarged image.

Metrics