Abstract

The downscaling of conventional RF transmission lines methodologies to subwavelength plasmonic circuits is discussed and demonstrated for a λ/4 transformer impedance matching. The nano-size transformer, matching between 0.5μm and 50nm wide plasmonic transmission lines, enhances the coupling efficiency by more than 285% compared to the direct (“end fire”) coupling – i.e. harvesting more than 86% of total incident power. The influence of the transverse resonances induced by the metal claddings of the input transmission line on the light harvesting is discussed as well.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,”Appl. Phys. Lett. 82,1158–1160 (2003).
    [CrossRef]
  3. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
    [CrossRef]
  4. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288ȓ3290 (2006).
    [CrossRef] [PubMed]
  5. E. Feigenbaum and M. Orenstein, “Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons,” Opt. Express 15, 2607–2612 (2007).
    [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
    [CrossRef]
  8. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007)
    [CrossRef] [PubMed]
  9. J. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
    [CrossRef]
  10. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  11. E. Feigenbaum and M. Orenstein, “Plasmonic Coaxial Nano-Cavities and Waveguides,” Lasers & Electro-Optics Society, IEEE,260–261 (2006).
  12. D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).
  13. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  14. J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), Whinnery J. R and Jamieson H. W, “Equivalent Circuits for Discontinuities in Transmission Line,” Proc. IRE32, 98–114 (1944).
    [CrossRef]
  15. J. Chramiec and M. Kitlinski, “Design of quarter-wave compact impedance transformers using coupled transmission lines,” Electron. Lett. 38, 1683–1685 (2002).
    [CrossRef]
  16. M. Siebold, E. Reiche, and H. Uhlmann, “Optimization of nonuniform transmission lines using time-domain reflectometry,” Antennas and Propagation Society International Symposium, IEEE 3, 794–797 (2002).
  17. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14, 6400–6413 (2006).
    [CrossRef] [PubMed]

2007 (2)

2006 (3)

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,”Appl. Phys. Lett. 82,1158–1160 (2003).
[CrossRef]

J. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[CrossRef]

2002 (3)

J. Chramiec and M. Kitlinski, “Design of quarter-wave compact impedance transformers using coupled transmission lines,” Electron. Lett. 38, 1683–1685 (2002).
[CrossRef]

M. Siebold, E. Reiche, and H. Uhlmann, “Optimization of nonuniform transmission lines using time-domain reflectometry,” Antennas and Propagation Society International Symposium, IEEE 3, 794–797 (2002).

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Arbel, D.

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Boroditsky, M.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Chramiec, J.

J. Chramiec and M. Kitlinski, “Design of quarter-wave compact impedance transformers using coupled transmission lines,” Electron. Lett. 38, 1683–1685 (2002).
[CrossRef]

Coccioli, R.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Dereux, A.

J. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Fan, S.

Feigenbaum, E.

E. Feigenbaum and M. Orenstein, “Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons,” Opt. Express 15, 2607–2612 (2007).
[CrossRef] [PubMed]

E. Feigenbaum and M. Orenstein, “Plasmonic Coaxial Nano-Cavities and Waveguides,” Lasers & Electro-Optics Society, IEEE,260–261 (2006).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ginzburg, P.

H. W, Jamieson

J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), Whinnery J. R and Jamieson H. W, “Equivalent Circuits for Discontinuities in Transmission Line,” Proc. IRE32, 98–114 (1944).
[CrossRef]

J. R, Whinnery

J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), Whinnery J. R and Jamieson H. W, “Equivalent Circuits for Discontinuities in Transmission Line,” Proc. IRE32, 98–114 (1944).
[CrossRef]

Jamieson, H. W.

J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), Whinnery J. R and Jamieson H. W, “Equivalent Circuits for Discontinuities in Transmission Line,” Proc. IRE32, 98–114 (1944).
[CrossRef]

Kim, K. W.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Kitlinski, M.

J. Chramiec and M. Kitlinski, “Design of quarter-wave compact impedance transformers using coupled transmission lines,” Electron. Lett. 38, 1683–1685 (2002).
[CrossRef]

Krenn, J. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Lacroute, Y.

J. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[CrossRef]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Mansuripur, M.

Moloney, J. V.

Orenstein, M.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Reiche, E.

M. Siebold, E. Reiche, and H. Uhlmann, “Optimization of nonuniform transmission lines using time-domain reflectometry,” Antennas and Propagation Society International Symposium, IEEE 3, 794–797 (2002).

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Siebold, M.

M. Siebold, E. Reiche, and H. Uhlmann, “Optimization of nonuniform transmission lines using time-domain reflectometry,” Antennas and Propagation Society International Symposium, IEEE 3, 794–797 (2002).

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,”Appl. Phys. Lett. 82,1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,”Appl. Phys. Lett. 82,1158–1160 (2003).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Uhlmann, H.

M. Siebold, E. Reiche, and H. Uhlmann, “Optimization of nonuniform transmission lines using time-domain reflectometry,” Antennas and Propagation Society International Symposium, IEEE 3, 794–797 (2002).

Veronis, G.

Weeber, J.

J. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[CrossRef]

Whinnery, J. R.

J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), Whinnery J. R and Jamieson H. W, “Equivalent Circuits for Discontinuities in Transmission Line,” Proc. IRE32, 98–114 (1944).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xie, Y.

Yablonovitch, E.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Zakharian, A. R.

Antennas and Propagation Society International Symposium, IEEE (1)

M. Siebold, E. Reiche, and H. Uhlmann, “Optimization of nonuniform transmission lines using time-domain reflectometry,” Antennas and Propagation Society International Symposium, IEEE 3, 794–797 (2002).

Appl. Phys. Lett. (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,”Appl. Phys. Lett. 82,1158–1160 (2003).
[CrossRef]

Electron. Lett. (1)

J. Chramiec and M. Kitlinski, “Design of quarter-wave compact impedance transformers using coupled transmission lines,” Electron. Lett. 38, 1683–1685 (2002).
[CrossRef]

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

IEE Proc. Optoelectron. (1)

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Lasers & Electro-Optics Society, IEEE, (1)

E. Feigenbaum and M. Orenstein, “Plasmonic Coaxial Nano-Cavities and Waveguides,” Lasers & Electro-Optics Society, IEEE,260–261 (2006).

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

J. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Other (3)

D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), Whinnery J. R and Jamieson H. W, “Equivalent Circuits for Discontinuities in Transmission Line,” Proc. IRE32, 98–114 (1944).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a). Gap Plasmon dispersion curve (Au cladding, Silica core, 1.55μm wavelength) -blue; major field (Hy); insets: Hy amplitude profiles at designated gap widths - red and green; (b) λ/4 impedance matching configuration.

Fig. 2.
Fig. 2.

λ/4 coupler (a) major field Hy (b) mode power

Fig. 3.
Fig. 3.

Direct coupling (a) major field Hy (b) mode power

Fig. 4.
Fig. 4.

Transformer dimensions optimization for maximal transmission.

Fig. 5.
Fig. 5.

Coupling with optimal transformer (a) the major field Hy (b) mode power

Fig. 6.
Fig. 6.

Coupling of limited (d=0.5μm as in previous figures) free space plan wave (a) the major field Hy (b) mode power

Fig. 7.
Fig. 7.

TL junction and the equivalent slit array

Fig.8.
Fig.8.

Extraordinary transmission of TL and slit array.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tgh ( d β 2 k 0 2 ε ) = β 2 k 0 2 ε m ε m β 2 k 0 2 ε ε
Z TM = E x H y = β ωε
Z 0 = d w Z TM = d w β ωε
Z 0 trans = d trans β trans ( wωε ) = β in d in β out d out ( wωε )
T = 4 d in β in d out β out ( d in β in + d out β out ) = 0.41

Metrics