Abstract

In this work, we report the optical properties of Tm3+ ions in tellurite glasses (TeO2-TiO2-Nb2O5) for different Tm3+ concentrations ranging between 0.05 and 1 wt%. Judd-Ofelt intensity parameters have been determined to calculate the radiative transition probabilities and radiative lifetimes of excited states. The stimulated emission cross-sections of the infrared emissions at 1487 nm and 1800 nm have been determined from the line shape of the emission spectra and the lifetimes of levels 3H4 and 3F4 respectively. The emission spectra obtained under 793 nm excitation reveal the existence of energy transfer via cross-relaxation among Tm3+ ions. As a result, the intensity of the infrared 3H43F4 emission at 1487 nm decreases in relation to the one at 1800 nm, as concentration increases. The non-exponential character of the decays from the 3H4 level with increasing concentration indicates the presence of a dipole-dipole quenching process assisted by energy migration. The self-quenching of the 3F43H6 emission at 1800 nm can be attributed to limited diffusion within the active centers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
    [CrossRef]
  2. S. Tanabe, X. Feng, and T. Hanada, "Improved emission of Tm3+-doped glass for a 1.4 ?m amplifier by radiative energy transfer between Tm3+ and Nd3+," Opt. Lett. 25, 817-819 (2000).
    [CrossRef]
  3. J. Wu, Z. Yao, J. Zong, and S. Jiang, "Highly efficient high-power thulium-doped germanate glass fiber laser," Opt. Lett. 32, 638-640 (2007).
    [CrossRef] [PubMed]
  4. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
    [CrossRef]
  5. R. A. H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL 2001).
    [CrossRef]
  6. S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999).
    [CrossRef]
  7. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
    [CrossRef]
  8. S. Shen, A. Jha, L. Huang, and P. Joshi, "980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification," Opt. Lett. 30, 1437-1439 (2005).
    [CrossRef] [PubMed]
  9. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
    [CrossRef]
  10. S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
    [CrossRef]
  11. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
    [CrossRef]
  12. A. Mori, "1.58-?m Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
    [CrossRef]
  13. R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
    [CrossRef]
  14. I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
    [CrossRef]
  15. S. Kim and T. Yoko, "Nonlinear optical properties of TeO2-based glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses," J. Am. Ceram. Soc. 78, 1061-1065 (1995).
    [CrossRef]
  16. H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
    [CrossRef]
  17. M. E. Lines, "Oxide glasses for fast photonic switching: A comparative study," J. Appl. Phys. 69, 6876-6884 (1991).
    [CrossRef]
  18. M. A. Villegas and J. M. Fernández Navarro, "Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system," J. Eur. Ceram. Soc. 27, 2715-2723 (2007).
    [CrossRef]
  19. H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
    [CrossRef]
  20. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  21. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  22. W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
    [CrossRef]
  23. M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
    [CrossRef]
  24. M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
    [CrossRef]
  25. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
    [CrossRef]
  26. M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
    [CrossRef]
  27. M. Naftaly, S. Shen, and A. Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47 ?m," Appl. Opt. 39, 4979-4984 (2000).
    [CrossRef]
  28. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
    [CrossRef]
  29. M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
    [CrossRef]
  30. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
    [CrossRef]
  31. A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).
  32. Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
    [CrossRef]
  33. A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004).
    [CrossRef]
  34. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
    [CrossRef]
  35. R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
    [CrossRef]
  36. F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
    [CrossRef]

2007 (4)

J. Wu, Z. Yao, J. Zong, and S. Jiang, "Highly efficient high-power thulium-doped germanate glass fiber laser," Opt. Lett. 32, 638-640 (2007).
[CrossRef] [PubMed]

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

M. A. Villegas and J. M. Fernández Navarro, "Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system," J. Eur. Ceram. Soc. 27, 2715-2723 (2007).
[CrossRef]

2006 (1)

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

2005 (1)

2004 (1)

A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004).
[CrossRef]

2003 (4)

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

2002 (2)

F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
[CrossRef]

A. Mori, "1.58-?m Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
[CrossRef]

2000 (2)

1999 (2)

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

1998 (2)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

1995 (1)

S. Kim and T. Yoko, "Nonlinear optical properties of TeO2-based glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses," J. Am. Ceram. Soc. 78, 1061-1065 (1995).
[CrossRef]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

1992 (1)

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

1991 (1)

M. E. Lines, "Oxide glasses for fast photonic switching: A comparative study," J. Appl. Phys. 69, 6876-6884 (1991).
[CrossRef]

1990 (2)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

1989 (1)

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

1987 (1)

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

1982 (1)

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

1972 (1)

A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).

1971 (1)

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

1967 (2)

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

1962 (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

Al-Saleh, M.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Angell, C. A.

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

Arriandiaga, M. A.

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
[CrossRef]

Azkargorta, J.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Balda, R.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

Boulon, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

Brenier, A.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

Chung, P. S.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Eyal, M.

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

Feng, X.

Fernández, J.

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

Fernández Navarro, J. M.

M. A. Villegas and J. M. Fernández Navarro, "Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system," J. Eur. Ceram. Soc. 27, 2715-2723 (2007).
[CrossRef]

Fernández-Navarro, J.

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

Fernández-Navarro, J. M.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Han, Y. S.

Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

Hanada, T.

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Heo, J.

Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

Hirao, K.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

Huang, L.

Iparraguirre, I.

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

Jacoboni, C.

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

Jha, A.

Jiang, S.

J. Wu, Z. Yao, J. Zong, and S. Jiang, "Highly efficient high-power thulium-doped germanate glass fiber laser," Opt. Lett. 32, 638-640 (2007).
[CrossRef] [PubMed]

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Jorgensen, C. K.

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

Joshi, P.

Judd, B. R.

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Kamiya, K.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

Kanamori, T.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Kanbara, H.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

Kim, S.

S. Kim and T. Yoko, "Nonlinear optical properties of TeO2-based glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses," J. Am. Ceram. Soc. 78, 1061-1065 (1995).
[CrossRef]

Kobayashi, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Kubodera, K.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

Kurt, A.

A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004).
[CrossRef]

Lacha, L. M.

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

Lin, H.

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Lines, M. E.

M. E. Lines, "Oxide glasses for fast photonic switching: A comparative study," J. Appl. Phys. 69, 6876-6884 (1991).
[CrossRef]

Luo, X. T.

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Man, S. Q.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Meredith, G.

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Moine, B.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

Mori, A.

A. Mori, "1.58-?m Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Naftaly, M.

Narazaki, A.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

Nasu, H.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

Nishida, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Ohishi, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Oikawa, K.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Ono, H.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

Özen, G.

A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004).
[CrossRef]

Pedrini, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Peng, X.

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Peyghambarian, N.

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Pledel, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

Pun, E. Y.

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

Pun, E. Y. B.

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

Reisfeld, R.

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

Schiller, A.

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004).
[CrossRef]

Shen, S.

Shin, Y. B.

Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Soga, N.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

Tanabe, S.

S. Tanabe, X. Feng, and T. Hanada, "Improved emission of Tm3+-doped glass for a 1.4 ?m amplifier by radiative energy transfer between Tm3+ and Nd3+," Opt. Lett. 25, 817-819 (2000).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

Tanaka, K.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

Uchigaki, T.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

Villegas, M. A.

M. A. Villegas and J. M. Fernández Navarro, "Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system," J. Eur. Ceram. Soc. 27, 2715-2723 (2007).
[CrossRef]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

Weber, M. J.

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

Wu, J.

Yamada, M.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Yao, Z.

Yoko, T.

S. Kim and T. Yoko, "Nonlinear optical properties of TeO2-based glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses," J. Am. Ceram. Soc. 78, 1061-1065 (1995).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

Ziegler, D. C.

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

Zong, J.

Appl. Opt. (1)

Chem. Phys. Lett. (1)

M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987).
[CrossRef]

Electron. Lett. (1)

J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

J. Am. Ceram. Soc. (1)

S. Kim and T. Yoko, "Nonlinear optical properties of TeO2-based glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses," J. Am. Ceram. Soc. 78, 1061-1065 (1995).
[CrossRef]

J. Appl. Phys. (4)

H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003).
[CrossRef]

M. E. Lines, "Oxide glasses for fast photonic switching: A comparative study," J. Appl. Phys. 69, 6876-6884 (1991).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999).
[CrossRef]

M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982).
[CrossRef]

J. Chem. Phys. (2)

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968).
[CrossRef]

J. Eur. Ceram. Soc. (1)

M. A. Villegas and J. M. Fernández Navarro, "Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system," J. Eur. Ceram. Soc. 27, 2715-2723 (2007).
[CrossRef]

J. Lightwave Technol. (1)

A. Mori, "1.58-?m Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002).
[CrossRef]

J. Lumin. (1)

F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
[CrossRef]

J. Non-Cryst. Solids (3)

Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003).
[CrossRef]

I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007).
[CrossRef]

S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004).
[CrossRef]

J. Phys. Soc. Japan (1)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967).
[CrossRef]

J. Phys.: Conden. Matter (1)

R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992).
[CrossRef]

Opt. Commun. (1)

S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (4)

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994).
[CrossRef]

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006).
[CrossRef]

Phys. Rev. (2)

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Phys. Rev. B (2)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

Sov. Phys. JETP (1)

A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).

Other (1)

R. A. H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Room temperature absorption cross-section of Tm3+ in TeO2-TiO2-Nb2O5 glass. (b) Energy level diagram obtained from the absorption spectrum.

Fig. 2.
Fig. 2.

Room temperature emission spectra of Tm3+ ion in TTN glass for the samples doped with 0.1, 0.2, 0.5 and 1 wt% of Tm2O3.

Fig. 3.
Fig. 3.

Spectral overlap between the 3H43F4 and 4I13/24I15/2 normalized emissions of Tm3+ and Er3+ ions respectively.

Fig. 4.
Fig. 4.

Logarithmic plot of the fluorescence decay of the 3H4 level obtained under excitation at 793 nm at room temperature for the samples doped with 0.1, 0.5, and 1 wt%.

Fig. 5.
Fig. 5.

Temperature dependence of the 3H4 level lifetime for the samples doped with 0.1, 0.2, 0.5, and 1 wt% of Tm2O3.

Fig. 6.
Fig. 6.

Logarithmic plot of the fluorescence decay of the 3F4 level obtained under excitation at 793 nm at room temperature for the samples doped with 0.1 and 1 wt%. The inset shows the rise times.

Fig. 7.
Fig. 7.

Quenching rates of the 3H4 emission as a function of the square of Tm3+ concentration at room temperature.

Fig. 8.
Fig. 8.

Experimental emission decay curve of level 3H4 for the sample doped with 1 wt% of Tm2O3 at room temperature and the calculated fit with equation (3) (solid line).

Fig. 9.
Fig. 9.

Quenching rates of the 3H4 emission as a function of the square of Tm3+ concentration at room temperature.

Fig. 10.
Fig. 10.

Experimental lifetimes of level 3F4 at room temperature as a function of Tm2O3 concentration and the calculated fit with Eq. (4).

Tables (1)

Tables Icon

Table 1. Predicted radiative transition rates, lifetimes, and branching ratios of Tm3+ in TTN glass.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ s e = λ p 4 8 π n 2 c β τ R Δ λ eff
1 τ 1 τ R = KN A N D
I ( t ) = I 0 exp ( t τ R γ t W t )
τ ( N ) = τ w [ 1 + 9 2 π ( N N 0 ) 2 ]

Metrics