J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638–640 (2007).
[Crossref]
[PubMed]
R. Balda, J. Fernández, M.A. Arriandiaga, and J. Fernández-Navarro, “Spectroscopy and frequency
upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223–086234 (2007).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
M.A. Villegas and J.M. Fernández Navarro, “Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system,” J. Eur. Ceram. Soc. 27, 2715–2723 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
A. Sennaroglu, A. Kurt, and G. Özen, “Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass,” J. Phys. Condens. Matter 16, 2471–2478 (2004).
[Crossref]
F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
Y.S. Han, J. Heo, and Y.B. Shin, “Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass,” J. Non-Cryst. Solids 316, 302–308 (2003).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
F. Auzel, “A fundamental self-generated quenching center for lanthanide-doped high-purity solids,” J. Lumin. 100, 125–130 (2002).
[Crossref]
A. Mori, “1.58-μm Broad-band erbium-doped tellurite fiber amplifier,” IEEE J. Lightwave Technol. LT-20, 822–827 (2002).
[Crossref]
S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4 μm amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25, 817–819 (2000).
[Crossref]
M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm”, Appl. Opt. 39, 4979–4984 (2000).
[Crossref]
Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[Crossref]
S.Q. Man, E.Y.B. Pun, and P.S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369–373 (1999).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
S. Kim and T. Yoko, “Nonlinear Optical Properties of TeO2-Based Glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses,” J. Am. Ceram. Soc. 78, 1061–1065 (1995).
[Crossref]
J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
M. E Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. App. Phys. 69, 6876–6884 (1991).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[Crossref]
J.Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
M.J. Weber, D.C. Ziegler, and C.A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses”, J. Appl. Phys. 53, 4344–4350 (1982).
[Crossref]
A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
M.J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation”, Phys. Rev. B 4, 2932–2939 (1971).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]
M.J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3”, Phys. Rev. 157, 262–272 (1967).
[Crossref]
M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance”, J. Phys. Soc. Japan 22, 779–784 (1967).
[Crossref]
B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]
G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
J.Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
M.J. Weber, D.C. Ziegler, and C.A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses”, J. Appl. Phys. 53, 4344–4350 (1982).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, and J. Fernández-Navarro, “Spectroscopy and frequency
upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223–086234 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[Crossref]
F. Auzel, “A fundamental self-generated quenching center for lanthanide-doped high-purity solids,” J. Lumin. 100, 125–130 (2002).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, and J. Fernández-Navarro, “Spectroscopy and frequency
upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223–086234 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[Crossref]
F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]
S.Q. Man, E.Y.B. Pun, and P.S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369–373 (1999).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
R.A.H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL2001).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, and J. Fernández-Navarro, “Spectroscopy and frequency
upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223–086234 (2007).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
M.A. Villegas and J.M. Fernández Navarro, “Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system,” J. Eur. Ceram. Soc. 27, 2715–2723 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, and J. Fernández-Navarro, “Spectroscopy and frequency
upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223–086234 (2007).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
Y.S. Han, J. Heo, and Y.B. Shin, “Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass,” J. Non-Cryst. Solids 316, 302–308 (2003).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
Y.S. Han, J. Heo, and Y.B. Shin, “Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass,” J. Non-Cryst. Solids 316, 302–308 (2003).
[Crossref]
S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[Crossref]
Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30, 1437–1439 (2005).
[Crossref]
[PubMed]
M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm”, Appl. Opt. 39, 4979–4984 (2000).
[Crossref]
J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638–640 (2007).
[Crossref]
[PubMed]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
S. Kim and T. Yoko, “Nonlinear Optical Properties of TeO2-Based Glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses,” J. Am. Ceram. Soc. 78, 1061–1065 (1995).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
A. Sennaroglu, A. Kurt, and G. Özen, “Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass,” J. Phys. Condens. Matter 16, 2471–2478 (2004).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
M. E Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. App. Phys. 69, 6876–6884 (1991).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
S.Q. Man, E.Y.B. Pun, and P.S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369–373 (1999).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
J.Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
A. Mori, “1.58-μm Broad-band erbium-doped tellurite fiber amplifier,” IEEE J. Lightwave Technol. LT-20, 822–827 (2002).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
A. Sennaroglu, A. Kurt, and G. Özen, “Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass,” J. Phys. Condens. Matter 16, 2471–2478 (2004).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
J.Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
S.Q. Man, E.Y.B. Pun, and P.S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369–373 (1999).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
A. Sennaroglu, A. Kurt, and G. Özen, “Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass,” J. Phys. Condens. Matter 16, 2471–2478 (2004).
[Crossref]
S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30, 1437–1439 (2005).
[Crossref]
[PubMed]
M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm”, Appl. Opt. 39, 4979–4984 (2000).
[Crossref]
Y.S. Han, J. Heo, and Y.B. Shin, “Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass,” J. Non-Cryst. Solids 316, 302–308 (2003).
[Crossref]
J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]
S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[Crossref]
Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[Crossref]
S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4 μm amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25, 817–819 (2000).
[Crossref]
S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[Crossref]
Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[Crossref]
M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance”, J. Phys. Soc. Japan 22, 779–784 (1967).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
M.A. Villegas and J.M. Fernández Navarro, “Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system,” J. Eur. Ceram. Soc. 27, 2715–2723 (2007).
[Crossref]
J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]
J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]
M.J. Weber, D.C. Ziegler, and C.A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses”, J. Appl. Phys. 53, 4344–4350 (1982).
[Crossref]
M.J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation”, Phys. Rev. B 4, 2932–2939 (1971).
[Crossref]
M.J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3”, Phys. Rev. 157, 262–272 (1967).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
S. Kim and T. Yoko, “Nonlinear Optical Properties of TeO2-Based Glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses,” J. Am. Ceram. Soc. 78, 1061–1065 (1995).
[Crossref]
M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance”, J. Phys. Soc. Japan 22, 779–784 (1967).
[Crossref]
M.J. Weber, D.C. Ziegler, and C.A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses”, J. Appl. Phys. 53, 4344–4350 (1982).
[Crossref]
M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C.K. Jorgensen, “Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses”, Chem. Phys. Lett. 140, 595–602 (1987).
[Crossref]
J.Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 μm in thulium doped fluorozirconate fiber,” Electron. Lett. 25, 1660–1662 (1989).
[Crossref]
A. Mori, “1.58-μm Broad-band erbium-doped tellurite fiber amplifier,” IEEE J. Lightwave Technol. LT-20, 822–827 (2002).
[Crossref]
M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10, 1244–1246 (1998).
[Crossref]
S. Kim and T. Yoko, “Nonlinear Optical Properties of TeO2-Based Glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses,” J. Am. Ceram. Soc. 78, 1061–1065 (1995).
[Crossref]
H. Lin, G. Meredith, S. Jiang, X. Peng, XT. Luo, N. Peyghambarian, and E. Y. Pun, “Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass,” J. App. Phys. 93,186–191 (2003).
[Crossref]
M. E Lines, “Oxide glasses for fast photonic switching: A comparative study,” J. App. Phys. 69, 6876–6884 (1991).
[Crossref]
Aiko Narazaki, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys. 85, 2046–2051 (1999).
[Crossref]
M.J. Weber, D.C. Ziegler, and C.A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses”, J. Appl. Phys. 53, 4344–4350 (1982).
[Crossref]
G.S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]
W.T. Carnall, P.R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968).
[Crossref]
M.A. Villegas and J.M. Fernández Navarro, “Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system,” J. Eur. Ceram. Soc. 27, 2715–2723 (2007).
[Crossref]
F. Auzel, “A fundamental self-generated quenching center for lanthanide-doped high-purity solids,” J. Lumin. 100, 125–130 (2002).
[Crossref]
I. Iparraguirre, J. Azkargorta, J.M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, “Laser action and upconversion of Nd3+ in tellurite bulk glass,” J. Non-Cryst. Solids 353, 990–992 (2007).
[Crossref]
Y.S. Han, J. Heo, and Y.B. Shin, “Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass,” J. Non-Cryst. Solids 316, 302–308 (2003).
[Crossref]
S. Tanabe, K. Hirao, and N. Soga, “Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+,” J. Non-Cryst. Solids 122, 79–82 (1990).
[Crossref]
A. Sennaroglu, A. Kurt, and G. Özen, “Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass,” J. Phys. Condens. Matter 16, 2471–2478 (2004).
[Crossref]
M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance”, J. Phys. Soc. Japan 22, 779–784 (1967).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, and J. Fernández-Navarro, “Spectroscopy and frequency
upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass,” J. Phys.: Conden. Matter 19, 086223–086234 (2007).
[Crossref]
H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 313899–3900 (1992).
[Crossref]
S.Q. Man, E.Y.B. Pun, and P.S. Chung, “Tellurite glasses for 1.3 μm optical amplifiers,” Opt. Commun. 168, 369–373 (1999).
[Crossref]
S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4 μm amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25, 817–819 (2000).
[Crossref]
Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-
based erbium-doped fiber amplifiers for 1.5 μm broadband amplification,” Opt. Lett. 23, 274–276 (1998).
[Crossref]
S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30, 1437–1439 (2005).
[Crossref]
[PubMed]
J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638–640 (2007).
[Crossref]
[PubMed]
F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24, 103–109 (2003).
[Crossref]
R. Balda, J. Fernández, M.A. Arriandiaga, L.M. Lacha, and J.M. Fernández-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28, 1247–1252 (2006).
[Crossref]
J.L. Doualan, S. Girard, H. Haquin, J.L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–577 (2003).
[Crossref]
J.S. Wang, E.M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]
M.J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3”, Phys. Rev. 157, 262–272 (1967).
[Crossref]
B.R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]
A. Brenier, C. Pedrini, B. Moine, J.L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses”, Phys. Rev. B 41, 5364–5371 (1990).
[Crossref]
M.J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation”, Phys. Rev. B 4, 2932–2939 (1971).
[Crossref]
A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
R.A.H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL2001).
[Crossref]