Abstract

A simple algorithm is derived to retrieve the aerosol backscattering and extinction vertical profiles from simultaneously detected ground and space elastic lidar signals, without any a priori hypothesis on aerosol particles properties. This technique can be applied at any wavelength whenever two “counter looking” lidars are available and the atmosphere can be considered horizontally homogeneous in a spatial scale of the order of the distance between the two lidar beams. To test the accuracy of the algorithm a numerical simulation has been performed. Moreover, it has been applied in a real case to level 1 products from CALIPSO.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An Algorithm to retrieve aerosol properties from analysis of multiple scattering influences on both Ground-Based and Space-Borne Lidar Returns

Xiaomei Lu, Yuesong Jiang, Xuguo Zhang, Xiaoxia Lu, and Yuntao He
Opt. Express 17(11) 8719-8728 (2009)

Retrieval of aerosol extinction-to-backscatter ratios by combining ground-based and space-borne lidar elastic scattering measurements

Xiaomei Lu, Yuesong Jiang, Xuguo Zhang, Xuan Wang, Libera Nasti, and Nicola Spinelli
Opt. Express 19(S2) A72-A79 (2011)

Validation of the Lidar In-Space Technology Experiment: stratospheric temperature and aerosol measurements

Yiyun Y. Gu, Chester S. Gardner, Paul A. Castleberg, George C. Papen, and Michael C. Kelley
Appl. Opt. 36(21) 5148-5157 (1997)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Charlson, et al., “Climate forcing of anthropogenic aerosols,“ Science, 255, 423–430 (1992).
    [Crossref]
  2. Y. J. Kaufmann, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,“ J. Geophys. Res. 102, 51–67 (1997).
    [Crossref]
  3. A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
    [Crossref]
  4. D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,“ Proc. IEEE 84, 164–180 (1996).
    [Crossref]
  5. J. D. Spinhirne, et al., “Cloud and aerosol measurements from GLAS: Overview and initial results,“ J. Geophys. Res 32, L22S03, doi:10.1029/2005GL023507 (2005).
  6. D. M. Winker, J. R. Pelon, and M. P. Cormick, “The CALIPSO mission: spaceborn lidar for observation of aerosols and clouds,“ Proc. SPIE 4893, 1–11 (2003).
    [Crossref]
  7. Troy Anselmo, et al., “Cloud - Aerosol LIDAR Infrared Pathfinder Satellite Observations, Data Management System and Data Products Catalog,“ Release 2.2 Document No. PC-SCI-503, 2006
  8. CALIPSO mission on NASA website: http://www.nasa.gov/mission_pages/calipso/main/index.html
  9. M. A. Vaughan, et al., “CALIOP Algorithm Theoretical Basis Document,“ PS-SCI-202 Part 2.
  10. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,“ Appl. Opt. 24, 1638–1643 (1985).
    [Crossref] [PubMed]
  11. F. G. Fernald, B. J. Herman, and J. A. Reagan, “Determination of aerosol height distributions by Lidar,“ Journal of Applied Meteorology 11, 482–489 (1972).
    [Crossref]
  12. L. Elterman, “Aerosol measurements in the troposphere and stratosphere,“ Appl. Opt. 5, 1769–1776 (1966).
    [Crossref] [PubMed]
  13. C. M. R. Platt, “Lidar and Radiometric Observations of Cirrus Clouds,“ J. Atmos. Sci. 30, 1191–1204 (1973).
    [Crossref]
  14. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
    [Crossref]
  15. K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
    [Crossref]
  16. M. Vaughan, et al., “Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products,“ Proc. SPIE 5575, 16–30 (2004).
    [Crossref]
  17. A. Ansmann, “Ground-truth aerosol lidar observations: can the Klett solution obtained from ground and space be equal for the same aerosol case?,“ Appl. Opt. 45, 3367–3371 (2006)
    [Crossref] [PubMed]
  18. M. Vaughan, “Algorithm for retrieving lidar ratio at 1064 nm from space-based lidar backscatter,“ Proc. SPIE 5240, 104–115 (2004).
    [Crossref]
  19. Kovacs, et al., “Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Quid Pro Quo Validation,“ 12th ARM Science Team Meeting Proceedings (2002).
    [PubMed]
  20. Hampton University website: http://calipsovalidation.hamptonu.edu/
  21. J. Bösenberg, et al., “EARLINET: A European Aerosol Research Lidar Network,“ in Advances in Laser Remote Sensing, Eds: A. Dabas, Claude Loth and Jacques Pelon, ISBN 2-7302-0798-8, 155–158, (2001).
  22. C. Böckmann, et al., “EARLINET-Lidar Algorithm Intercomparison,“ J. Aerosol Science 32, 433–434 (2001).
  23. EARLINET website: http://www.earlinet.org/
  24. C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
    [Crossref]
  25. L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
    [Crossref]
  26. W. Chen, C. Chiang, and J. Nel, “Lidar ratio and depolarization for cirrus clouds,“ Appl. Opt. 30, 6470–6476 (2002).
    [Crossref]
  27. L. Mona, et al., “Characterization of the variability of the humidity and cloud fields as observed from a cluster of ground-based lidar systems,“ Q. J. R. Meteorol. Soc. (Submitted).
  28. U. Draxler and G.D. v Rolph NOAA ARL HYSPLIT model. NOAA/Air Resource Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html (2003).
  29. T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
    [Crossref]
  30. Sea WiFS website http://oceancolor.gsfc.nasa.gov/SeaWiFS/
  31. A. Ansmann and U. Wandinger “Combined Raman Elastic Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and lidar ratio,“ Appl. Phys. B 55, 18–28 (1992).
    [Crossref]
  32. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,“ Opt. Lett. 15, 746–748 (1990).
    [Crossref] [PubMed]

2006 (3)

Troy Anselmo, et al., “Cloud - Aerosol LIDAR Infrared Pathfinder Satellite Observations, Data Management System and Data Products Catalog,“ Release 2.2 Document No. PC-SCI-503, 2006

A. Ansmann, “Ground-truth aerosol lidar observations: can the Klett solution obtained from ground and space be equal for the same aerosol case?,“ Appl. Opt. 45, 3367–3371 (2006)
[Crossref] [PubMed]

L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
[Crossref]

2005 (3)

C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
[Crossref]

J. D. Spinhirne, et al., “Cloud and aerosol measurements from GLAS: Overview and initial results,“ J. Geophys. Res 32, L22S03, doi:10.1029/2005GL023507 (2005).

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

2004 (2)

M. Vaughan, “Algorithm for retrieving lidar ratio at 1064 nm from space-based lidar backscatter,“ Proc. SPIE 5240, 104–115 (2004).
[Crossref]

M. Vaughan, et al., “Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products,“ Proc. SPIE 5575, 16–30 (2004).
[Crossref]

2003 (3)

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

D. M. Winker, J. R. Pelon, and M. P. Cormick, “The CALIPSO mission: spaceborn lidar for observation of aerosols and clouds,“ Proc. SPIE 4893, 1–11 (2003).
[Crossref]

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

2002 (2)

W. Chen, C. Chiang, and J. Nel, “Lidar ratio and depolarization for cirrus clouds,“ Appl. Opt. 30, 6470–6476 (2002).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

2001 (1)

C. Böckmann, et al., “EARLINET-Lidar Algorithm Intercomparison,“ J. Aerosol Science 32, 433–434 (2001).

1997 (1)

Y. J. Kaufmann, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,“ J. Geophys. Res. 102, 51–67 (1997).
[Crossref]

1996 (1)

D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,“ Proc. IEEE 84, 164–180 (1996).
[Crossref]

1992 (2)

R. J. Charlson, et al., “Climate forcing of anthropogenic aerosols,“ Science, 255, 423–430 (1992).
[Crossref]

A. Ansmann and U. Wandinger “Combined Raman Elastic Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and lidar ratio,“ Appl. Phys. B 55, 18–28 (1992).
[Crossref]

1990 (1)

1985 (1)

1973 (1)

C. M. R. Platt, “Lidar and Radiometric Observations of Cirrus Clouds,“ J. Atmos. Sci. 30, 1191–1204 (1973).
[Crossref]

1972 (1)

F. G. Fernald, B. J. Herman, and J. A. Reagan, “Determination of aerosol height distributions by Lidar,“ Journal of Applied Meteorology 11, 482–489 (1972).
[Crossref]

1966 (1)

Althausen, D.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

Amodeo, A.

L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
[Crossref]

Anderson, T.L.

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

Anselmo, Troy

Troy Anselmo, et al., “Cloud - Aerosol LIDAR Infrared Pathfinder Satellite Observations, Data Management System and Data Products Catalog,“ Release 2.2 Document No. PC-SCI-503, 2006

Ansmann, A.

A. Ansmann, “Ground-truth aerosol lidar observations: can the Klett solution obtained from ground and space be equal for the same aerosol case?,“ Appl. Opt. 45, 3367–3371 (2006)
[Crossref] [PubMed]

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

A. Ansmann and U. Wandinger “Combined Raman Elastic Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and lidar ratio,“ Appl. Phys. B 55, 18–28 (1992).
[Crossref]

A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,“ Opt. Lett. 15, 746–748 (1990).
[Crossref] [PubMed]

Böckmann, C.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

C. Böckmann, et al., “EARLINET-Lidar Algorithm Intercomparison,“ J. Aerosol Science 32, 433–434 (2001).

Bösenberg, J.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

J. Bösenberg, et al., “EARLINET: A European Aerosol Research Lidar Network,“ in Advances in Laser Remote Sensing, Eds: A. Dabas, Claude Loth and Jacques Pelon, ISBN 2-7302-0798-8, 155–158, (2001).

Cattrall, C.

C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
[Crossref]

Charlson, R. J.

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

R. J. Charlson, et al., “Climate forcing of anthropogenic aerosols,“ Science, 255, 423–430 (1992).
[Crossref]

Chen, W.

W. Chen, C. Chiang, and J. Nel, “Lidar ratio and depolarization for cirrus clouds,“ Appl. Opt. 30, 6470–6476 (2002).
[Crossref]

Chiang, C.

W. Chen, C. Chiang, and J. Nel, “Lidar ratio and depolarization for cirrus clouds,“ Appl. Opt. 30, 6470–6476 (2002).
[Crossref]

Cormick, M. P.

D. M. Winker, J. R. Pelon, and M. P. Cormick, “The CALIPSO mission: spaceborn lidar for observation of aerosols and clouds,“ Proc. SPIE 4893, 1–11 (2003).
[Crossref]

Couch, R. H.

D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,“ Proc. IEEE 84, 164–180 (1996).
[Crossref]

Draxler, U.

U. Draxler and G.D. v Rolph NOAA ARL HYSPLIT model. NOAA/Air Resource Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html (2003).

Dubovik, O.

C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
[Crossref]

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

Elterman, L.

Fernald, F. G.

F. G. Fernald, B. J. Herman, and J. A. Reagan, “Determination of aerosol height distributions by Lidar,“ Journal of Applied Meteorology 11, 482–489 (1972).
[Crossref]

Fiebig, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

Franke, K.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

Herman, B. J.

F. G. Fernald, B. J. Herman, and J. A. Reagan, “Determination of aerosol height distributions by Lidar,“ Journal of Applied Meteorology 11, 482–489 (1972).
[Crossref]

Holmen, K.

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

Kaufmann, Y. J.

Y. J. Kaufmann, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,“ J. Geophys. Res. 102, 51–67 (1997).
[Crossref]

Klett, J. D.

Kovacs,

Kovacs, et al., “Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Quid Pro Quo Validation,“ 12th ARM Science Team Meeting Proceedings (2002).
[PubMed]

Matthias, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

McCormick, M. P.

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,“ Proc. IEEE 84, 164–180 (1996).
[Crossref]

Mona, L.

L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
[Crossref]

L. Mona, et al., “Characterization of the variability of the humidity and cloud fields as observed from a cluster of ground-based lidar systems,“ Q. J. R. Meteorol. Soc. (Submitted).

Müller, D.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

Nel, J.

W. Chen, C. Chiang, and J. Nel, “Lidar ratio and depolarization for cirrus clouds,“ Appl. Opt. 30, 6470–6476 (2002).
[Crossref]

Ogren, J. A.

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

Omar, A. H.

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

Pandolfi, M.

L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
[Crossref]

Pappalardo, G.

L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
[Crossref]

Pelon, J. R.

D. M. Winker, J. R. Pelon, and M. P. Cormick, “The CALIPSO mission: spaceborn lidar for observation of aerosols and clouds,“ Proc. SPIE 4893, 1–11 (2003).
[Crossref]

Platt, C. M. R.

C. M. R. Platt, “Lidar and Radiometric Observations of Cirrus Clouds,“ J. Atmos. Sci. 30, 1191–1204 (1973).
[Crossref]

Reagan, J.

C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
[Crossref]

Reagan, J. A.

F. G. Fernald, B. J. Herman, and J. A. Reagan, “Determination of aerosol height distributions by Lidar,“ Journal of Applied Meteorology 11, 482–489 (1972).
[Crossref]

Riebesell, M.

Scheele, R.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

Shekar Reddy, M.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

Spinhirne, J. D.

J. D. Spinhirne, et al., “Cloud and aerosol measurements from GLAS: Overview and initial results,“ J. Geophys. Res 32, L22S03, doi:10.1029/2005GL023507 (2005).

Stohl, A.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

Thome, K.

C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
[Crossref]

v Rolph, G.D.

U. Draxler and G.D. v Rolph NOAA ARL HYSPLIT model. NOAA/Air Resource Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html (2003).

Vaughan, M.

M. Vaughan, et al., “Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products,“ Proc. SPIE 5575, 16–30 (2004).
[Crossref]

M. Vaughan, “Algorithm for retrieving lidar ratio at 1064 nm from space-based lidar backscatter,“ Proc. SPIE 5240, 104–115 (2004).
[Crossref]

Vaughan, M. A.

M. A. Vaughan, et al., “CALIOP Algorithm Theoretical Basis Document,“ PS-SCI-202 Part 2.

Venkataraman, C.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

Wagner, F.

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

Wandinger, U.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

A. Ansmann and U. Wandinger “Combined Raman Elastic Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and lidar ratio,“ Appl. Phys. B 55, 18–28 (1992).
[Crossref]

Weiß, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

Weitkamp, C.

Wendisch, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

Winker, D. M.

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

D. M. Winker, J. R. Pelon, and M. P. Cormick, “The CALIPSO mission: spaceborn lidar for observation of aerosols and clouds,“ Proc. SPIE 4893, 1–11 (2003).
[Crossref]

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,“ Proc. IEEE 84, 164–180 (1996).
[Crossref]

Won, J.-G.

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

Yoon, S.-C.

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

A. Ansmann and U. Wandinger “Combined Raman Elastic Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and lidar ratio,“ Appl. Phys. B 55, 18–28 (1992).
[Crossref]

J. Aerosol Science (1)

C. Böckmann, et al., “EARLINET-Lidar Algorithm Intercomparison,“ J. Aerosol Science 32, 433–434 (2001).

J. Atmos. Sci. (2)

T.L. Anderson, R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmen, “Mesoscale variations of tropospheric aerosols,“ J. Atmos. Sci. 60, 119–136 (2003).
[Crossref]

C. M. R. Platt, “Lidar and Radiometric Observations of Cirrus Clouds,“ J. Atmos. Sci. 30, 1191–1204 (1973).
[Crossref]

J. Geophys. Res (1)

J. D. Spinhirne, et al., “Cloud and aerosol measurements from GLAS: Overview and initial results,“ J. Geophys. Res 32, L22S03, doi:10.1029/2005GL023507 (2005).

J. Geophys. Res, (1)

A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,“ J. Geophys. Res, 110, D10S14, doi:10.1029/2004JD004874,(2005).
[Crossref]

J. Geophys. Res. (4)

Y. J. Kaufmann, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,“ J. Geophys. Res. 102, 51–67 (1997).
[Crossref]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiβ, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,“ J. Geophys. Res. 107, 10.1029/2 000JD000202 (2002).
[Crossref]

K. Franke, A. Ansmann, D. Müller, D. Althausen, C. Venkataraman, M. Shekar Reddy, F. Wagner, and R. Scheele, “Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean,“ J. Geophys. Res. 108, 10.I029/2002JD002473 (2003).
[Crossref]

L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusion in the Mediterranean area: three years of Raman lidar mesurements,“ J. Geophys. Res. 111, D16203 doi: 10.1029/2005JD006569 (2006).
[Crossref]

J. Geophys. Research (1)

C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,“ J. Geophys. Research 110, D10S11, 10.1029/2004JD005124 (2005).
[Crossref]

Journal of Applied Meteorology (1)

F. G. Fernald, B. J. Herman, and J. A. Reagan, “Determination of aerosol height distributions by Lidar,“ Journal of Applied Meteorology 11, 482–489 (1972).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,“ Proc. IEEE 84, 164–180 (1996).
[Crossref]

Proc. SPIE (3)

D. M. Winker, J. R. Pelon, and M. P. Cormick, “The CALIPSO mission: spaceborn lidar for observation of aerosols and clouds,“ Proc. SPIE 4893, 1–11 (2003).
[Crossref]

M. Vaughan, et al., “Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products,“ Proc. SPIE 5575, 16–30 (2004).
[Crossref]

M. Vaughan, “Algorithm for retrieving lidar ratio at 1064 nm from space-based lidar backscatter,“ Proc. SPIE 5240, 104–115 (2004).
[Crossref]

Release 2.2 Document No. (1)

Troy Anselmo, et al., “Cloud - Aerosol LIDAR Infrared Pathfinder Satellite Observations, Data Management System and Data Products Catalog,“ Release 2.2 Document No. PC-SCI-503, 2006

Science, (1)

R. J. Charlson, et al., “Climate forcing of anthropogenic aerosols,“ Science, 255, 423–430 (1992).
[Crossref]

Other (9)

CALIPSO mission on NASA website: http://www.nasa.gov/mission_pages/calipso/main/index.html

M. A. Vaughan, et al., “CALIOP Algorithm Theoretical Basis Document,“ PS-SCI-202 Part 2.

Kovacs, et al., “Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Quid Pro Quo Validation,“ 12th ARM Science Team Meeting Proceedings (2002).
[PubMed]

Hampton University website: http://calipsovalidation.hamptonu.edu/

J. Bösenberg, et al., “EARLINET: A European Aerosol Research Lidar Network,“ in Advances in Laser Remote Sensing, Eds: A. Dabas, Claude Loth and Jacques Pelon, ISBN 2-7302-0798-8, 155–158, (2001).

Sea WiFS website http://oceancolor.gsfc.nasa.gov/SeaWiFS/

EARLINET website: http://www.earlinet.org/

L. Mona, et al., “Characterization of the variability of the humidity and cloud fields as observed from a cluster of ground-based lidar systems,“ Q. J. R. Meteorol. Soc. (Submitted).

U. Draxler and G.D. v Rolph NOAA ARL HYSPLIT model. NOAA/Air Resource Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Simulated RCS from ground-based lidar (solid line) and spaceborne lidar (dash line) signals (a); retrieved aerosol backscatter coefficient (open circle) and its solution (thick line) (b); retrieved aerosol extinction coefficient (open square) and its solution (thick line) (c). <LR> denotes the averaged lidar ratio for different layers. The vertical resolution of two RCS is 60 m.

Fig. 2.
Fig. 2.

Time series of Napoli RCS profile: pink lines indicate the limits of time integration, and dash line is the overpass time (a); CALIPSO total ABS (km-1sr-1), measured from 20 August 2006, 01:10:15.4662 GMT to 01:23:34.4432 GMT. The thick pink line marks the overpass of CALIPSO spacecraft (b).

Fig. 3.
Fig. 3.

CALIPSO ABS as obtained by averaging of 326 profiles (thick line) and RCS from Napoli lidar (dash line) as obtained by averaging 10 min acquisition profiles (a); Backscatter coefficient as obtained from the CESC algorithm (thick line) and from Raman method (dash line) (b); Extinction profile from CESC (thick line) and from nitrogen Raman method (c)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

RCS s ( z ) = k β ( z ) exp ( 2 τ zc )
RCS g ( z ) = k A ( z ) β ( z ) exp ( 2 τ 0 z )
P ( z ) = RCS s ( z ) RCS g ( z ) = k β 2 ( z ) exp [ 2 ( τ zc + τ 0 z ) ]
β ( z ) = P ( z ) K
β ( z ) = β mol ( z * ) P ( z ) P ( z * ) .
β p ( z ) = β ( z ) β mol ( z ) .
R ( z ) = RCS s ( z ) RCS g ( z ) = k k exp [ ( τ zc τ 0 z ) ] = k k exp ( 2 τ 0 c ) exp ( 4 τ 0 z ) .
τ 0 z ( z ) = 1 4 [ ln R ( z ) C ]
τ ( z 2 z 1 ) = 1 4 [ ln R ( z 2 ) ln R ( z 1 ) ]
α p ( z ) = 1 4 d d z [ ln R ( z ) ] α mol ( z ) .
A ( z ) = ( G ( z ) β R ( z ) ) 2

Metrics