Abstract

We present a novel approach to enhance light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction of point defects that enhance the radiative recombination rate. Ion implantation, pulsed laser melting and rapid thermal annealing were used to create a diode containing a self-interstitial-rich optically active region from which the zero-phonon emission line at 1218 nm originates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics Vol. 194. (Springer-Verlag, Berlin, 2003).
    [Crossref]
  2. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
    [Crossref]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
    [Crossref] [PubMed]
  4. Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, 258–260 (1995).
    [Crossref]
  5. A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline Si,” Nature 353, 335–338 (1991).
    [Crossref]
  6. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
    [Crossref] [PubMed]
  7. E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69, 2686–2688 (1996).
    [Crossref]
  8. P. L Bradfield, T. G. Brown, and D. G. Hall, “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon,” Appl. Phys. Lett. 55, 100–102 (1989).
    [Crossref]
  9. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
    [Crossref]
  10. D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
    [Crossref]
  11. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline Si,” Nat. Mater. 4, 887–891 (2005).
    [Crossref] [PubMed]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
    [Crossref] [PubMed]
  13. O. Boyraz and B. Jalali, “Demonstration of a Si Raman laser,” Opt. Express 12, 5269 (2004).
    [Crossref] [PubMed]
  14. M. S. Skolnick, A. G. Cullis, and H. C. Webber, “Defect photoluminescence from pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 38, 464–466 (1981).
    [Crossref]
  15. G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).
  16. G. Davies, “The optical properties of luminescence centers in Si,” Phys. Rep. 176, 83–188 (1989).
    [Crossref]
  17. S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
    [Crossref]
  18. P.K. Giri, “Photoluminescence signature of Si interstitial cluster evolution from compact to extended structures in ion-implanted Si,” Semiconductor science and technology 20, 638–644 (2005).
    [Crossref]
  19. P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation energy for the photoluminescence W center in Si,” Appl. Phys. Lett. 60, 59–61 (1992).
    [Crossref]
  20. M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
    [Crossref]
  21. G. M. Lopez and V. Fiorentini, “Structure, energetics and extrinsic levels of small self-interstitials clusters in Si,” Phys. Rev. B, 69, 155206–155213 (2004).
    [Crossref]
  22. C. R. Jones, J. Coutinho, and P. R. Briddon, “Density-functional study of small interstitial clusters in Si: Comparison with experiments,” Phys. Rev. B 72, 155208–155212 (2005).
    [Crossref]
  23. D. E. Hoglund, M. O. Thompson, and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B 58, 189 (1998).
    [Crossref]
  24. T.G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-bandgap infrared absorption in Si supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902–241904 (2006).
    [Crossref]
  25. M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
    [Crossref]
  26. S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 69.
  27. M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.
  28. T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline Si,” Appl. Phys. Let. 49, 245–247 (1986).
    [Crossref]
  29. P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
    [Crossref]
  30. T. G. Brown, P. L. Bradfield, and D. G. Hall, “Concentration dependence of optical emission from sulfur-doped crystalline Si,” Appl. Phys. Lett. 51, 1585–1587 (1987).
    [Crossref]
  31. S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 145.
  32. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
    [Crossref]

2006 (1)

T.G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-bandgap infrared absorption in Si supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902–241904 (2006).
[Crossref]

2005 (4)

C. R. Jones, J. Coutinho, and P. R. Briddon, “Density-functional study of small interstitial clusters in Si: Comparison with experiments,” Phys. Rev. B 72, 155208–155212 (2005).
[Crossref]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline Si,” Nat. Mater. 4, 887–891 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

P.K. Giri, “Photoluminescence signature of Si interstitial cluster evolution from compact to extended structures in ion-implanted Si,” Semiconductor science and technology 20, 638–644 (2005).
[Crossref]

2004 (3)

O. Boyraz and B. Jalali, “Demonstration of a Si Raman laser,” Opt. Express 12, 5269 (2004).
[Crossref] [PubMed]

G. M. Lopez and V. Fiorentini, “Structure, energetics and extrinsic levels of small self-interstitials clusters in Si,” Phys. Rev. B, 69, 155206–155213 (2004).
[Crossref]

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

2001 (1)

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

2000 (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

1998 (3)

M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
[Crossref]

D. E. Hoglund, M. O. Thompson, and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B 58, 189 (1998).
[Crossref]

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

1997 (1)

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
[Crossref]

1996 (3)

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
[Crossref]

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69, 2686–2688 (1996).
[Crossref]

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

1995 (1)

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, 258–260 (1995).
[Crossref]

1994 (1)

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

1992 (1)

P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation energy for the photoluminescence W center in Si,” Appl. Phys. Lett. 60, 59–61 (1992).
[Crossref]

1991 (1)

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline Si,” Nature 353, 335–338 (1991).
[Crossref]

1989 (2)

P. L Bradfield, T. G. Brown, and D. G. Hall, “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon,” Appl. Phys. Lett. 55, 100–102 (1989).
[Crossref]

G. Davies, “The optical properties of luminescence centers in Si,” Phys. Rep. 176, 83–188 (1989).
[Crossref]

1987 (1)

T. G. Brown, P. L. Bradfield, and D. G. Hall, “Concentration dependence of optical emission from sulfur-doped crystalline Si,” Appl. Phys. Lett. 51, 1585–1587 (1987).
[Crossref]

1986 (1)

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline Si,” Appl. Phys. Let. 49, 245–247 (1986).
[Crossref]

1984 (1)

G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).

1981 (1)

M. S. Skolnick, A. G. Cullis, and H. C. Webber, “Defect photoluminescence from pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 38, 464–466 (1981).
[Crossref]

Aoki, Y.

M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
[Crossref]

Aziz, M. J.

T.G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-bandgap infrared absorption in Si supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902–241904 (2006).
[Crossref]

D. E. Hoglund, M. O. Thompson, and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B 58, 189 (1998).
[Crossref]

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

Aziz, M.J.

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

Badylevich, M.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

Baribeau, J.

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, 258–260 (1995).
[Crossref]

Boyraz, O.

Bradfield, P. L

P. L Bradfield, T. G. Brown, and D. G. Hall, “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon,” Appl. Phys. Lett. 55, 100–102 (1989).
[Crossref]

Bradfield, P. L.

T. G. Brown, P. L. Bradfield, and D. G. Hall, “Concentration dependence of optical emission from sulfur-doped crystalline Si,” Appl. Phys. Lett. 51, 1585–1587 (1987).
[Crossref]

Briddon, P. R.

C. R. Jones, J. Coutinho, and P. R. Briddon, “Density-functional study of small interstitial clusters in Si: Comparison with experiments,” Phys. Rev. B 72, 155208–155212 (2005).
[Crossref]

Brown, T. G.

P. L Bradfield, T. G. Brown, and D. G. Hall, “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon,” Appl. Phys. Lett. 55, 100–102 (1989).
[Crossref]

T. G. Brown, P. L. Bradfield, and D. G. Hall, “Concentration dependence of optical emission from sulfur-doped crystalline Si,” Appl. Phys. Lett. 51, 1585–1587 (1987).
[Crossref]

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline Si,” Appl. Phys. Let. 49, 245–247 (1986).
[Crossref]

Brunco, D.P.

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

Canham, L. T.

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline Si,” Nature 353, 335–338 (1991).
[Crossref]

Cardozo, B. L.

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline Si,” Nat. Mater. 4, 887–891 (2005).
[Crossref] [PubMed]

Coffa, S.

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Coutinho, J.

C. R. Jones, J. Coutinho, and P. R. Briddon, “Density-functional study of small interstitial clusters in Si: Comparison with experiments,” Phys. Rev. B 72, 155208–155212 (2005).
[Crossref]

Cullis, A. G.

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline Si,” Nature 353, 335–338 (1991).
[Crossref]

M. S. Skolnick, A. G. Cullis, and H. C. Webber, “Defect photoluminescence from pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 38, 464–466 (1981).
[Crossref]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Davies, G.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

G. Davies, “The optical properties of luminescence centers in Si,” Phys. Rep. 176, 83–188 (1989).
[Crossref]

Duttagupta, S. P.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
[Crossref]

Elliman, R. G.

P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation energy for the photoluminescence W center in Si,” Appl. Phys. Lett. 60, 59–61 (1992).
[Crossref]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Fauchet, P. M.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
[Crossref]

Fiorentini, V.

G. M. Lopez and V. Fiorentini, “Structure, energetics and extrinsic levels of small self-interstitials clusters in Si,” Phys. Rev. B, 69, 155206–155213 (2004).
[Crossref]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Giri, P.K.

P.K. Giri, “Photoluminescence signature of Si interstitial cluster evolution from compact to extended structures in ion-implanted Si,” Semiconductor science and technology 20, 638–644 (2005).
[Crossref]

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

Goldman, R. S.

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

Götz, G.

G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).

Gwilliam, R. M.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Hall, D. G.

P. L Bradfield, T. G. Brown, and D. G. Hall, “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon,” Appl. Phys. Lett. 55, 100–102 (1989).
[Crossref]

T. G. Brown, P. L. Bradfield, and D. G. Hall, “Concentration dependence of optical emission from sulfur-doped crystalline Si,” Appl. Phys. Lett. 51, 1585–1587 (1987).
[Crossref]

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline Si,” Appl. Phys. Let. 49, 245–247 (1986).
[Crossref]

Harry, M.

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
[Crossref]

Hirschman, K. D.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
[Crossref]

Hoglund, D. E.

D. E. Hoglund, M. O. Thompson, and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B 58, 189 (1998).
[Crossref]

Homewood, K. P.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
[Crossref]

Ittermann, B.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Izotov, A.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

Jacobson, D. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

Jalali, B.

Jeyanathan, L.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Jones, C. R.

C. R. Jones, J. Coutinho, and P. R. Briddon, “Density-functional study of small interstitial clusters in Si: Comparison with experiments,” Phys. Rev. B 72, 155208–155212 (2005).
[Crossref]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Kim, T.

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

Kim, T.G.

T.G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-bandgap infrared absorption in Si supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902–241904 (2006).
[Crossref]

Kimerling, L. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

Kittl, J.A.

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline Si,” Nat. Mater. 4, 887–891 (2005).
[Crossref] [PubMed]

Kveder, V.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

Ledain, S.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Leong, D.

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
[Crossref]

Libertino, S.

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

Lightowlers, E. C.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Lockwood, D. J.

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, 258–260 (1995).
[Crossref]

Lopez, G. M.

G. M. Lopez and V. Fiorentini, “Structure, energetics and extrinsic levels of small self-interstitials clusters in Si,” Phys. Rev. B, 69, 155206–155213 (2004).
[Crossref]

Lourenco, M. A.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, 258–260 (1995).
[Crossref]

Mason, P. W.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Michel, J.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

Nagai, S.

M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
[Crossref]

Nakamura, M.

M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
[Crossref]

Naramoto, H.

M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
[Crossref]

Nebelung, R.

G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).

Ng, W. L.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Ossicini, S.

S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics Vol. 194. (Springer-Verlag, Berlin, 2003).
[Crossref]

Ostapenko, S. S.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics Vol. 194. (Springer-Verlag, Berlin, 2003).
[Crossref]

Poate, J. M.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics Vol. 194. (Springer-Verlag, Berlin, 2003).
[Crossref]

Reeson, K. J.

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
[Crossref]

Ren, F. Y. G.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

Rimini, E.

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

Sanders, P.G.

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

Schröter, W.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

Schultz, P. J.

P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation energy for the photoluminescence W center in Si,” Appl. Phys. Lett. 60, 59–61 (1992).
[Crossref]

Seibt, M.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

Shao, G.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Singh, M.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Skolnick, M. S.

M. S. Skolnick, A. G. Cullis, and H. C. Webber, “Defect photoluminescence from pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 38, 464–466 (1981).
[Crossref]

Spinella, C.

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

Steinman, E.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

Stock, D.

G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).

Sun, H. J.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Sveinbjörnsson, E. Ö.

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69, 2686–2688 (1996).
[Crossref]

Sze, S. M.

S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 145.

S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 69.

Tabbal, M.

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

Thompson, M. O.

D. E. Hoglund, M. O. Thompson, and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B 58, 189 (1998).
[Crossref]

Thompson, M.O.

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

Thompson, T. D.

P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation energy for the photoluminescence W center in Si,” Appl. Phys. Lett. 60, 59–61 (1992).
[Crossref]

Tsybeskov, L.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
[Crossref]

Warrender, J. M.

T.G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-bandgap infrared absorption in Si supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902–241904 (2006).
[Crossref]

Warrender, J.M.

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

Watkins, G. D.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

Webber, H. C.

M. S. Skolnick, A. G. Cullis, and H. C. Webber, “Defect photoluminescence from pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 38, 464–466 (1981).
[Crossref]

Weber, J.

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69, 2686–2688 (1996).
[Crossref]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline Si,” Nat. Mater. 4, 887–891 (2005).
[Crossref] [PubMed]

Zheng, B.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

Ziegler, W.

G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).

Appl. Phys. Let. (1)

T. G. Brown and D. G. Hall, “Optical emission at 1.32 μm from sulfur-doped crystalline Si,” Appl. Phys. Let. 49, 245–247 (1986).
[Crossref]

Appl. Phys. Lett. (10)

T.G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-bandgap infrared absorption in Si supersaturated with sulfur,” Appl. Phys. Lett. 88, 241902–241904 (2006).
[Crossref]

T. G. Brown, P. L. Bradfield, and D. G. Hall, “Concentration dependence of optical emission from sulfur-doped crystalline Si,” Appl. Phys. Lett. 51, 1585–1587 (1987).
[Crossref]

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, and W. Schröter, “Room-temperature silicon light-emitting diodes based on dislocation luminescence,” Appl. Phys. Lett. 84, 2106–2108 (2004).
[Crossref]

E. Ö. Sveinbjörnsson and J. Weber, “Room temperature electroluminescence from dislocation-rich silicon,” Appl. Phys. Lett. 69, 2686–2688 (1996).
[Crossref]

P. L Bradfield, T. G. Brown, and D. G. Hall, “Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon,” Appl. Phys. Lett. 55, 100–102 (1989).
[Crossref]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 μm from an erbium-doped Si light-emitting diode,” Appl. Phys. Lett. 64, 2842–2844 (1994).
[Crossref]

M. S. Skolnick, A. G. Cullis, and H. C. Webber, “Defect photoluminescence from pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 38, 464–466 (1981).
[Crossref]

S. Coffa, S. Libertino, and C. Spinella, “Transition from small interstitial clusters to extended {311} defects in ion-implanted Si,” Appl. Phys. Lett. 76, 321–323 (2000); P.K. Giri, S. Coffa, and E. Rimini, “Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si,” Appl. Phys. Lett. 78, 291–293 (2001).
[Crossref]

P. J. Schultz, T. D. Thompson, and R. G. Elliman, “Activation energy for the photoluminescence W center in Si,” Appl. Phys. Lett. 60, 59–61 (1992).
[Crossref]

M. Nakamura, S. Nagai, Y. Aoki, and H. Naramoto, “Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted Si crystals,” Appl. Phys. Lett. 72, 1347–1349 (1998).
[Crossref]

Metall. Mater. Trans. A (1)

M. J. Aziz, “Interface Attachment Kinetics in Alloy Solidification,” Metall. Mater. Trans. A 27, 671 (1996); J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Thompson, “Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification,” Acta Mater. 48, 4797 (2000).
[Crossref]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline Si,” Nat. Mater. 4, 887–891 (2005).
[Crossref] [PubMed]

Nature (7)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-Si Raman laser,” Nature 433, 292–294 (2005).
[Crossref] [PubMed]

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5μm,” Nature 387,686–688 (1997).
[Crossref]

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, “Si-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, 338 (1996).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Si nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, 258–260 (1995).
[Crossref]

A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline Si,” Nature 353, 335–338 (1991).
[Crossref]

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature Si-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Nuclear Instruments and methods in physics research (1)

G. Götz, R. Nebelung, D. Stock, and W. Ziegler, “Photoluminescence investigation of defects after ion-implantation and laser annealing,” Nuclear Instruments and methods in physics research B2, 757–760 (1984).

Opt. Express (1)

Phys. Rep. (1)

G. Davies, “The optical properties of luminescence centers in Si,” Phys. Rep. 176, 83–188 (1989).
[Crossref]

Phys. Rev. B (2)

C. R. Jones, J. Coutinho, and P. R. Briddon, “Density-functional study of small interstitial clusters in Si: Comparison with experiments,” Phys. Rev. B 72, 155208–155212 (2005).
[Crossref]

D. E. Hoglund, M. O. Thompson, and M. J. Aziz, “Experimental test of morphological stability theory for a planar interface during rapid solidification,” Phys. Rev. B 58, 189 (1998).
[Crossref]

Phys. Rev. B, (2)

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies, and E. C. Lightowlers, “Sulfur-related metastable luminescence center in Si,” Phys. Rev. B, 58, 7007–7019 (1998).
[Crossref]

G. M. Lopez and V. Fiorentini, “Structure, energetics and extrinsic levels of small self-interstitials clusters in Si,” Phys. Rev. B, 69, 155206–155213 (2004).
[Crossref]

Semiconductor science and technology (1)

P.K. Giri, “Photoluminescence signature of Si interstitial cluster evolution from compact to extended structures in ion-implanted Si,” Semiconductor science and technology 20, 638–644 (2005).
[Crossref]

Other (4)

S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 69.

M. Tabbal, T. Kim, J.M. Warrender, M. J. Aziz, B. L. Cardozo, and R. S. Goldman, Unpublished.

S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics Vol. 194. (Springer-Verlag, Berlin, 2003).
[Crossref]

S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 145.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Surface-emission photoluminescence spectrum of a sample without contacts at 7 K. The inset show the schematic of a Si light emitting diode (not to scale).

Fig. 2.
Fig. 2.

(right) Current –voltage curves at temperature 290 K, 80 K and 6 K. (left) Edge-emission electroluminescence spectra of the LED at a temperature of 80 K and 6 K. The black arrows indicate the position of the Si band-edge luminescence.

Fig. 3.
Fig. 3.

Temperature dependent intensity of W-line emission at a constant current of 5 mA. The red straight line is the best fit to the high temperature data points. The inset shows the W-line emission power as a function of injection current at 6 K. The line is a guide to the eye.

Metrics