Abstract

Femtosecond laser drilling is used to produce a variable-pressure fiber gas cell. Tightly focused laser pulses are used to produce micrometer-diameter radial channels in a hollow-core photonic band-gap fiber (HC-PBGF), and through these microchannels the core of the fiber is filled with a gas. The fiber cell is formed by fusion splicing and sealing the ends of the HC-PBGF to standard step-index fiber. As a demonstration, acetylene is introduced into an evacuated fiber at multiple backing pressures and spectra are measured.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  3. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  4. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  5. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
    [CrossRef] [PubMed]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  8. J. Henningsen, J. Hald, and J. C. Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005).
    [CrossRef] [PubMed]
  9. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  10. F. Benabid, P. Light, F. Couny, and P. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005).
    [CrossRef] [PubMed]
  11. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
    [CrossRef] [PubMed]
  12. B. Alfeeli, G. Pickrell, and A. Wang, "Sub-nanoliter spectroscopic gas sensor," Sensors 6, 1308-1320 (2006).
    [CrossRef]
  13. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  14. P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber," Opt. Lett. 31, 2538-2540 (2006).
    [CrossRef] [PubMed]
  15. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
    [CrossRef]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  17. D. Homoelle, S. Wielandy, N. Borrelli, C. Smith, and A. L. Gaeta, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  18. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  19. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
    [CrossRef]
  20. K. Ke, E. F. HasselbrinkJr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005).
    [CrossRef] [PubMed]
  21. X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
    [CrossRef]
  22. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, "Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses," Opt. Lett. 26, 1912-1914 (2001).
    [CrossRef]
  23. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, "Microchannels in conventional single-mode fibers," Opt. Lett. 31, 2559-2561 (2006).
    [CrossRef] [PubMed]
  24. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
    [CrossRef]
  25. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, "Arc fusion splicing of hollowcore photonic bandgap fibers for gas-filled fiber cells," Opt. Express 14, 9576-9583 (2006).
    [CrossRef] [PubMed]

2006 (5)

2005 (8)

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

K. Ke, E. F. HasselbrinkJr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

2001 (2)

1999 (3)

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

D. Homoelle, S. Wielandy, N. Borrelli, C. Smith, and A. L. Gaeta, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

1997 (1)

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

1996 (1)

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Alfeeli, B.

B. Alfeeli, G. Pickrell, and A. Wang, "Sub-nanoliter spectroscopic gas sensor," Sensors 6, 1308-1320 (2006).
[CrossRef]

Allan, D. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Benabid, F.

P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber," Opt. Lett. 31, 2538-2540 (2006).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Bennion, I.

Bhagwat, A. R.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Birks, T.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Borrelli, N.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Brodeur, A.

Campbell, K.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Corwin, K. L.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Davis, K. M.

Du, D.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Fallnich, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Farr, L.

Gaeta, A. L.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

D. Homoelle, S. Wielandy, N. Borrelli, C. Smith, and A. L. Gaeta, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

Gallagher, M. T.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Garcia, J. F.

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Groisman, A.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Hald, J.

Hansen, T.

Hasselbrink, E. F.

K. Ke, E. F. HasselbrinkJr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005).
[CrossRef] [PubMed]

Henningsen, J.

Hensley, C. J.

Hirao, K.

Homoelle, D.

Hunt, A. J.

K. Ke, E. F. HasselbrinkJr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005).
[CrossRef] [PubMed]

Itoh, K.

Jiang, Y.

Kamlage, G.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Ke, K.

K. Ke, E. F. HasselbrinkJr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005).
[CrossRef] [PubMed]

Kim, T. N.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Kleinfeld, D.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Knabe, K.

Knight, J.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Koch, K. W.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Kuroda, D.

Lai, Y.

Li, Y.

Light, P.

Light, P. S.

Liu, X.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Ludvigsen, H.

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Mason, M.

Mazur, E.

Miura, K.

Momma, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Muller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Nishii, J.

Nolte, S.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Ostendorf, A.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Petersen, J.

Peterson, J. C.

Pickrell, G.

B. Alfeeli, G. Pickrell, and A. Wang, "Sub-nanoliter spectroscopic gas sensor," Sensors 6, 1308-1320 (2006).
[CrossRef]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Ritari, T.

Roberts, P.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Russell, J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Russell, P.

Russell, P. St. J.

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Sabert, H.

Schaffer, C. B.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Simonsen, H.

Smith, C.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Sørensen, T.

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

St, P.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Sugimoto, N.

Thapa, R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Tomlinson, A.

Tuominen, J.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Venkateraman, N.

von Alvensleben, F.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Wang, A.

B. Alfeeli, G. Pickrell, and A. Wang, "Sub-nanoliter spectroscopic gas sensor," Sensors 6, 1308-1320 (2006).
[CrossRef]

Washburn, B. R.

Watanabe, W.

Welling, H.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Wielandy, S.

Williams, D.

Yamada, K.

Zhang, L.

Zhou, K.

Anal. Chem. (1)

K. Ke, E. F. HasselbrinkJr., and A. J. Hunt, "Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates," Anal. Chem. 77, 5083-5088 (2005).
[CrossRef] [PubMed]

Appl. Phys. A (1)

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse width from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, "Femtosecond laser-drilled capillary integrated into a microfluidic device," Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Nature (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan, "Single-mode photonic band gap guidnce of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Sensors (1)

B. Alfeeli, G. Pickrell, and A. Wang, "Sub-nanoliter spectroscopic gas sensor," Sensors 6, 1308-1320 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup for laser-drilling. (b) Schematic showing the drilling orientation for HC-PBGF.

Fig. 2.
Fig. 2.

(a) SEM image of HC-1550-02 fiber laser drilled with 80-nJ pulses. (b) Closeup image of drilled capillary formed in the side of fiber, the surface diameter of the channel is 1.5 μm.

Fig. 3.
Fig. 3.

(a) Cutback measurements taken along the length of the fiber. The drilled section is located at 150 mm (gray). (b) Averaged HC-1550-02 spectral transmission with (red) and without (black) laser-drilled section, both spectra are normalized to peak transmission before drilling. Subtracting these two plots gives the loss due to the drilled section (dashed line).

Fig. 4.
Fig. 4.

Experimental setup for acetylene filling. The laser-drilled hole is held inside a vacuum cell, which is evacuated with a roughing pump. The fiber jacket to vacuum chamber is sealed with a low vapor-pressure epoxy resin.

Fig. 5.
Fig. 5.

Vibrational-rotational spectra of acetylene filled HC-PBGF. These spectra are taken by measuring transmission through a 72-cm length of hollow core fiber and are normalized to the fiber band-gap transmission.

Metrics