Abstract

We demonstrate a new scheme for measuring different tensor elements of the optical Kerr effect response. A dual-ring, polarization-dependent Sagnac interferometer is used to create two copropagating probe pulses that arrive at the sample at different times but that reach the detector simultaneously and collinearly. The tensor element of the response that is measured is determined by the polarization of the pump pulse. By controlling the relative timing of the probe pulses it is also possible to perform optical subtraction of two different tensor elements of the response at two different times, a strategy that can be used to enhance or suppress particular contributions to the OKE response.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Righini, “Ultrafast Optical Kerr Effect in Liquids and Solids,” Science 262, 1386–1390 (1993).
    [CrossRef] [PubMed]
  2. J. T. Fourkas, “Non-resonant Intermolecular Spectroscopy of Liquids,” in Ultrafast Infrared and Raman Spectroscopy, M. D. Fayer, ed. (Marcel Dekker, New York, 2001), pp. 473–512.
  3. N. A. Smith and S. R. Meech, “Optically-Heterodyne-Detected Optical Kerr Effect (OHD-OKE): Applications in Condensed Phase Dynamics,” Int. Rev. Phys. Chem. 21, 75–100 (2002).
    [CrossRef]
  4. S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
    [CrossRef]
  5. B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
    [CrossRef]
  6. D. McMorrow and W. T. Lotshaw, “Intermolecular Dynamics in Acetonitrile Probed with Femtosecond Fourier Transform Raman Spectroscopy,” J. Phys. Chem. 95, 10395–10406 (1991).
    [CrossRef]
  7. E. W. Castner and M. Maroncelli, “Solvent Dynamics Derived from Optical Kerr Effect, Dielectric Dispersion, and Time-Resolved Stokes Shift Measurements: An Empirical Comparison,” J. Mol. Liq. 77, 1–36 (1998).
    [CrossRef]
  8. C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
    [CrossRef]
  9. T. Steffen, N. A. C. M. Meinders, and K. Duppen, “Microscopic Origin of the Optical Kerr Effect Response of CS2-Pentane Binary Mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
    [CrossRef]
  10. A. Scodinu and J. T. Fourkas, “Intermolecular Dynamics and structure of Carbon Disulfide in Isoviscous Alkane Solutions: An Optical Kerr Effect Study,” J. Phys. Chem. B 107, 44–51 (2003).
    [CrossRef]
  11. M. Neelakandan, D. Pant, and E. L. Quitevis, “Reorientational and Intermolecular Dynamics in Binary Liquid Mixtures of Hexafluorobenzene and Benzene: Femtosecond Optical Kerr Effect Measurements,” Chem. Phys. Lett. 265, 283–292 (1997).
    [CrossRef]
  12. H. Shirota and E. W. Castner, “Ultrafast Dynamics in Aqueous Polyacrylamide Solutions,” J. Am. Chem. Soc. 123, 12877–12885 (2001).
    [CrossRef] [PubMed]
  13. N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
    [CrossRef]
  14. B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
    [CrossRef]
  15. R. A. Farrer and J. T. Fourkas, “Orientational Dynamics of Liquids Confined in Nanoporous Sol-Gel Glasses Studied by Optical Kerr Effect Spectroscopy,” Acc. Chem. Res. 36, 605–612 (2003).
    [CrossRef] [PubMed]
  16. N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast Dynamics in Microemulsions: Optical Kerr Effect Study of the Dispersed Oil Phase in a Carbon Disulfide-Dodecyltrimethylammonium Bromide-Water Microemulsion,” J. Phys. Chem. B 107, 3405–3418 (2003).
    [CrossRef]
  17. N. T. Hunt and S. R. Meech, “Orientational and Interaction Induced Dynamics in the Isotropic Phase of a Liquid Crystal: Polarization Resolved Ultrafast Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 120, 10828–10836 (2004).
    [CrossRef] [PubMed]
  18. R. L. Murry and J. T. Fourkas, “Polarization Selectivity of Non-resonant Spectroscopies in Isotropic Media,” J. Chem. Phys. 107, 9726–9740 (1997).
    [CrossRef]
  19. J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
    [CrossRef]
  20. C. J. Fecko, J. D. Eaves, and A. Tokmakoff, “Isotropic and Anisotropic Raman Scattering from Molecular Liquids Measured by Spatially Masked Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
    [CrossRef]
  21. Y. J. Chang, P. Cong, and J. D. Simon, “Isotropic and Anisotropic Intermolecular Dynamics of Liquids Studied by Femtosecond Position-Sensitive Kerr Lens Spectroscopy,” J. Chem. Phys. 106, 8639–8649 (1997).
    [CrossRef]
  22. P. Cong, Y. J. Chang, and J. D. Simon, “Complete Determination of Intermolecular Spectral Densities of Liquids Using Position-Sensitive Kerr Lens Spectroscopy,” J. Phys. Chem. 100, 8613–8616 (1996).
    [CrossRef]
  23. R. Trebino and C. C. Hayden, “Antiresonant-Ring Transient Spectroscopy,” Opt. Lett. 16, 493–495 (1991).
    [CrossRef] [PubMed]
  24. D. McMorrow, “Separation of Nuclear and Electronic Contributions to Femtosecond Four-Wave Mixing Data,” Opt. Commun. 86, 236–244 (1991).
    [CrossRef]
  25. R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
    [CrossRef]
  26. R. L. Murry, J. T. Fourkas, and T. Keyes, “Non-resonant Intermolecular Spectroscopy Beyond the Placzek Approximation. I. Third-Order Spectroscopy,” J. Chem. Phys. 109, 2814–2825 (1998).
    [CrossRef]
  27. X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
    [CrossRef]
  28. S. G. Frankiss, “Vibrational Spectra and Structures of S2Cl2, S2Br2, Se2Cl2, and Se2Br2,” J. Mol. Struct. 2, 271–279 (1968).
    [CrossRef]
  29. E. B. Bradley, M. S. Mathur, and C. A. Frenzel, “New Measurements of the Infrared and the Raman Spectrum of S2Cl2,” J. Chem. Phys. 47, 4325–4329 (1967).
    [CrossRef]
  30. X. Zhu, R. A. Farrer, and J. T. Fourkas, “Optical Kerr Effect Spectroscopy Using Time-Delayed Pairs of Pump Pulses with Orthogonal Polarizations,” J. Phys. Chem. B 109, 8481–8488 (2005).
    [CrossRef]

2005 (1)

X. Zhu, R. A. Farrer, and J. T. Fourkas, “Optical Kerr Effect Spectroscopy Using Time-Delayed Pairs of Pump Pulses with Orthogonal Polarizations,” J. Phys. Chem. B 109, 8481–8488 (2005).
[CrossRef]

2004 (3)

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
[CrossRef]

N. T. Hunt and S. R. Meech, “Orientational and Interaction Induced Dynamics in the Isotropic Phase of a Liquid Crystal: Polarization Resolved Ultrafast Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 120, 10828–10836 (2004).
[CrossRef] [PubMed]

2003 (4)

R. A. Farrer and J. T. Fourkas, “Orientational Dynamics of Liquids Confined in Nanoporous Sol-Gel Glasses Studied by Optical Kerr Effect Spectroscopy,” Acc. Chem. Res. 36, 605–612 (2003).
[CrossRef] [PubMed]

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast Dynamics in Microemulsions: Optical Kerr Effect Study of the Dispersed Oil Phase in a Carbon Disulfide-Dodecyltrimethylammonium Bromide-Water Microemulsion,” J. Phys. Chem. B 107, 3405–3418 (2003).
[CrossRef]

A. Scodinu and J. T. Fourkas, “Intermolecular Dynamics and structure of Carbon Disulfide in Isoviscous Alkane Solutions: An Optical Kerr Effect Study,” J. Phys. Chem. B 107, 44–51 (2003).
[CrossRef]

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

2002 (2)

C. J. Fecko, J. D. Eaves, and A. Tokmakoff, “Isotropic and Anisotropic Raman Scattering from Molecular Liquids Measured by Spatially Masked Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[CrossRef]

N. A. Smith and S. R. Meech, “Optically-Heterodyne-Detected Optical Kerr Effect (OHD-OKE): Applications in Condensed Phase Dynamics,” Int. Rev. Phys. Chem. 21, 75–100 (2002).
[CrossRef]

2001 (1)

H. Shirota and E. W. Castner, “Ultrafast Dynamics in Aqueous Polyacrylamide Solutions,” J. Am. Chem. Soc. 123, 12877–12885 (2001).
[CrossRef] [PubMed]

2000 (1)

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

1999 (1)

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

1998 (3)

E. W. Castner and M. Maroncelli, “Solvent Dynamics Derived from Optical Kerr Effect, Dielectric Dispersion, and Time-Resolved Stokes Shift Measurements: An Empirical Comparison,” J. Mol. Liq. 77, 1–36 (1998).
[CrossRef]

T. Steffen, N. A. C. M. Meinders, and K. Duppen, “Microscopic Origin of the Optical Kerr Effect Response of CS2-Pentane Binary Mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[CrossRef]

R. L. Murry, J. T. Fourkas, and T. Keyes, “Non-resonant Intermolecular Spectroscopy Beyond the Placzek Approximation. I. Third-Order Spectroscopy,” J. Chem. Phys. 109, 2814–2825 (1998).
[CrossRef]

1997 (4)

R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
[CrossRef]

Y. J. Chang, P. Cong, and J. D. Simon, “Isotropic and Anisotropic Intermolecular Dynamics of Liquids Studied by Femtosecond Position-Sensitive Kerr Lens Spectroscopy,” J. Chem. Phys. 106, 8639–8649 (1997).
[CrossRef]

M. Neelakandan, D. Pant, and E. L. Quitevis, “Reorientational and Intermolecular Dynamics in Binary Liquid Mixtures of Hexafluorobenzene and Benzene: Femtosecond Optical Kerr Effect Measurements,” Chem. Phys. Lett. 265, 283–292 (1997).
[CrossRef]

R. L. Murry and J. T. Fourkas, “Polarization Selectivity of Non-resonant Spectroscopies in Isotropic Media,” J. Chem. Phys. 107, 9726–9740 (1997).
[CrossRef]

1996 (2)

S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, “Complete Determination of Intermolecular Spectral Densities of Liquids Using Position-Sensitive Kerr Lens Spectroscopy,” J. Phys. Chem. 100, 8613–8616 (1996).
[CrossRef]

1993 (1)

R. Righini, “Ultrafast Optical Kerr Effect in Liquids and Solids,” Science 262, 1386–1390 (1993).
[CrossRef] [PubMed]

1991 (3)

D. McMorrow and W. T. Lotshaw, “Intermolecular Dynamics in Acetonitrile Probed with Femtosecond Fourier Transform Raman Spectroscopy,” J. Phys. Chem. 95, 10395–10406 (1991).
[CrossRef]

R. Trebino and C. C. Hayden, “Antiresonant-Ring Transient Spectroscopy,” Opt. Lett. 16, 493–495 (1991).
[CrossRef] [PubMed]

D. McMorrow, “Separation of Nuclear and Electronic Contributions to Femtosecond Four-Wave Mixing Data,” Opt. Commun. 86, 236–244 (1991).
[CrossRef]

1988 (1)

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

1968 (1)

S. G. Frankiss, “Vibrational Spectra and Structures of S2Cl2, S2Br2, Se2Cl2, and Se2Br2,” J. Mol. Struct. 2, 271–279 (1968).
[CrossRef]

1967 (1)

E. B. Bradley, M. S. Mathur, and C. A. Frenzel, “New Measurements of the Infrared and the Raman Spectrum of S2Cl2,” J. Chem. Phys. 47, 4325–4329 (1967).
[CrossRef]

Ariyoshi, T.

S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
[CrossRef]

Bradley, E. B.

E. B. Bradley, M. S. Mathur, and C. A. Frenzel, “New Measurements of the Infrared and the Raman Spectrum of S2Cl2,” J. Chem. Phys. 47, 4325–4329 (1967).
[CrossRef]

Castner, E. W.

H. Shirota and E. W. Castner, “Ultrafast Dynamics in Aqueous Polyacrylamide Solutions,” J. Am. Chem. Soc. 123, 12877–12885 (2001).
[CrossRef] [PubMed]

E. W. Castner and M. Maroncelli, “Solvent Dynamics Derived from Optical Kerr Effect, Dielectric Dispersion, and Time-Resolved Stokes Shift Measurements: An Empirical Comparison,” J. Mol. Liq. 77, 1–36 (1998).
[CrossRef]

Chang, Y. J.

Y. J. Chang, P. Cong, and J. D. Simon, “Isotropic and Anisotropic Intermolecular Dynamics of Liquids Studied by Femtosecond Position-Sensitive Kerr Lens Spectroscopy,” J. Chem. Phys. 106, 8639–8649 (1997).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, “Complete Determination of Intermolecular Spectral Densities of Liquids Using Position-Sensitive Kerr Lens Spectroscopy,” J. Phys. Chem. 100, 8613–8616 (1996).
[CrossRef]

Cong, P.

Y. J. Chang, P. Cong, and J. D. Simon, “Isotropic and Anisotropic Intermolecular Dynamics of Liquids Studied by Femtosecond Position-Sensitive Kerr Lens Spectroscopy,” J. Chem. Phys. 106, 8639–8649 (1997).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, “Complete Determination of Intermolecular Spectral Densities of Liquids Using Position-Sensitive Kerr Lens Spectroscopy,” J. Phys. Chem. 100, 8613–8616 (1996).
[CrossRef]

Deschenes, L. A.

R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
[CrossRef]

Duppen, K.

T. Steffen, N. A. C. M. Meinders, and K. Duppen, “Microscopic Origin of the Optical Kerr Effect Response of CS2-Pentane Binary Mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[CrossRef]

Eaves, J. D.

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

C. J. Fecko, J. D. Eaves, and A. Tokmakoff, “Isotropic and Anisotropic Raman Scattering from Molecular Liquids Measured by Spatially Masked Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[CrossRef]

Farrer, R. A.

X. Zhu, R. A. Farrer, and J. T. Fourkas, “Optical Kerr Effect Spectroscopy Using Time-Delayed Pairs of Pump Pulses with Orthogonal Polarizations,” J. Phys. Chem. B 109, 8481–8488 (2005).
[CrossRef]

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

R. A. Farrer and J. T. Fourkas, “Orientational Dynamics of Liquids Confined in Nanoporous Sol-Gel Glasses Studied by Optical Kerr Effect Spectroscopy,” Acc. Chem. Res. 36, 605–612 (2003).
[CrossRef] [PubMed]

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
[CrossRef]

Fecko, C. J.

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

C. J. Fecko, J. D. Eaves, and A. Tokmakoff, “Isotropic and Anisotropic Raman Scattering from Molecular Liquids Measured by Spatially Masked Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[CrossRef]

Fourkas, J. T.

X. Zhu, R. A. Farrer, and J. T. Fourkas, “Optical Kerr Effect Spectroscopy Using Time-Delayed Pairs of Pump Pulses with Orthogonal Polarizations,” J. Phys. Chem. B 109, 8481–8488 (2005).
[CrossRef]

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

R. A. Farrer and J. T. Fourkas, “Orientational Dynamics of Liquids Confined in Nanoporous Sol-Gel Glasses Studied by Optical Kerr Effect Spectroscopy,” Acc. Chem. Res. 36, 605–612 (2003).
[CrossRef] [PubMed]

A. Scodinu and J. T. Fourkas, “Intermolecular Dynamics and structure of Carbon Disulfide in Isoviscous Alkane Solutions: An Optical Kerr Effect Study,” J. Phys. Chem. B 107, 44–51 (2003).
[CrossRef]

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

R. L. Murry, J. T. Fourkas, and T. Keyes, “Non-resonant Intermolecular Spectroscopy Beyond the Placzek Approximation. I. Third-Order Spectroscopy,” J. Chem. Phys. 109, 2814–2825 (1998).
[CrossRef]

R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
[CrossRef]

R. L. Murry and J. T. Fourkas, “Polarization Selectivity of Non-resonant Spectroscopies in Isotropic Media,” J. Chem. Phys. 107, 9726–9740 (1997).
[CrossRef]

J. T. Fourkas, “Non-resonant Intermolecular Spectroscopy of Liquids,” in Ultrafast Infrared and Raman Spectroscopy, M. D. Fayer, ed. (Marcel Dekker, New York, 2001), pp. 473–512.

Frankiss, S. G.

S. G. Frankiss, “Vibrational Spectra and Structures of S2Cl2, S2Br2, Se2Cl2, and Se2Br2,” J. Mol. Struct. 2, 271–279 (1968).
[CrossRef]

Frenzel, C. A.

E. B. Bradley, M. S. Mathur, and C. A. Frenzel, “New Measurements of the Infrared and the Raman Spectrum of S2Cl2,” J. Chem. Phys. 47, 4325–4329 (1967).
[CrossRef]

Gershgoren, E.

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

Hayden, C. C.

Hellman, A.

N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
[CrossRef]

Hunt, N. T.

N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
[CrossRef]

N. T. Hunt and S. R. Meech, “Orientational and Interaction Induced Dynamics in the Isotropic Phase of a Liquid Crystal: Polarization Resolved Ultrafast Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 120, 10828–10836 (2004).
[CrossRef] [PubMed]

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast Dynamics in Microemulsions: Optical Kerr Effect Study of the Dispersed Oil Phase in a Carbon Disulfide-Dodecyltrimethylammonium Bromide-Water Microemulsion,” J. Phys. Chem. B 107, 3405–3418 (2003).
[CrossRef]

Jaye, A. A.

N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
[CrossRef]

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast Dynamics in Microemulsions: Optical Kerr Effect Study of the Dispersed Oil Phase in a Carbon Disulfide-Dodecyltrimethylammonium Bromide-Water Microemulsion,” J. Phys. Chem. B 107, 3405–3418 (2003).
[CrossRef]

Kai, Y.

S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
[CrossRef]

Kalpouzos, C.

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

Kapteyn, H. C.

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

Kenney-Wallace, G. A.

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

Keyes, T.

R. L. Murry, J. T. Fourkas, and T. Keyes, “Non-resonant Intermolecular Spectroscopy Beyond the Placzek Approximation. I. Third-Order Spectroscopy,” J. Chem. Phys. 109, 2814–2825 (1998).
[CrossRef]

Kinoshita, S.

S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
[CrossRef]

Lotshaw, W. T.

D. McMorrow and W. T. Lotshaw, “Intermolecular Dynamics in Acetonitrile Probed with Femtosecond Fourier Transform Raman Spectroscopy,” J. Phys. Chem. 95, 10395–10406 (1991).
[CrossRef]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

Loughnane, B. J.

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
[CrossRef]

Maroncelli, M.

E. W. Castner and M. Maroncelli, “Solvent Dynamics Derived from Optical Kerr Effect, Dielectric Dispersion, and Time-Resolved Stokes Shift Measurements: An Empirical Comparison,” J. Mol. Liq. 77, 1–36 (1998).
[CrossRef]

Mathur, M. S.

E. B. Bradley, M. S. Mathur, and C. A. Frenzel, “New Measurements of the Infrared and the Raman Spectrum of S2Cl2,” J. Chem. Phys. 47, 4325–4329 (1967).
[CrossRef]

McMorrow, D.

D. McMorrow, “Separation of Nuclear and Electronic Contributions to Femtosecond Four-Wave Mixing Data,” Opt. Commun. 86, 236–244 (1991).
[CrossRef]

D. McMorrow and W. T. Lotshaw, “Intermolecular Dynamics in Acetonitrile Probed with Femtosecond Fourier Transform Raman Spectroscopy,” J. Phys. Chem. 95, 10395–10406 (1991).
[CrossRef]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

Meech, S. R.

N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
[CrossRef]

N. T. Hunt and S. R. Meech, “Orientational and Interaction Induced Dynamics in the Isotropic Phase of a Liquid Crystal: Polarization Resolved Ultrafast Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 120, 10828–10836 (2004).
[CrossRef] [PubMed]

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast Dynamics in Microemulsions: Optical Kerr Effect Study of the Dispersed Oil Phase in a Carbon Disulfide-Dodecyltrimethylammonium Bromide-Water Microemulsion,” J. Phys. Chem. B 107, 3405–3418 (2003).
[CrossRef]

N. A. Smith and S. R. Meech, “Optically-Heterodyne-Detected Optical Kerr Effect (OHD-OKE): Applications in Condensed Phase Dynamics,” Int. Rev. Phys. Chem. 21, 75–100 (2002).
[CrossRef]

Meinders, N. A. C. M.

T. Steffen, N. A. C. M. Meinders, and K. Duppen, “Microscopic Origin of the Optical Kerr Effect Response of CS2-Pentane Binary Mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[CrossRef]

Mohanty, U.

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

Murry, R. L.

R. L. Murry, J. T. Fourkas, and T. Keyes, “Non-resonant Intermolecular Spectroscopy Beyond the Placzek Approximation. I. Third-Order Spectroscopy,” J. Chem. Phys. 109, 2814–2825 (1998).
[CrossRef]

R. L. Murry and J. T. Fourkas, “Polarization Selectivity of Non-resonant Spectroscopies in Isotropic Media,” J. Chem. Phys. 107, 9726–9740 (1997).
[CrossRef]

Neelakandan, M.

M. Neelakandan, D. Pant, and E. L. Quitevis, “Reorientational and Intermolecular Dynamics in Binary Liquid Mixtures of Hexafluorobenzene and Benzene: Femtosecond Optical Kerr Effect Measurements,” Chem. Phys. Lett. 265, 283–292 (1997).
[CrossRef]

Pant, D.

M. Neelakandan, D. Pant, and E. L. Quitevis, “Reorientational and Intermolecular Dynamics in Binary Liquid Mixtures of Hexafluorobenzene and Benzene: Femtosecond Optical Kerr Effect Measurements,” Chem. Phys. Lett. 265, 283–292 (1997).
[CrossRef]

Peng, P.

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

Quitevis, E. L.

M. Neelakandan, D. Pant, and E. L. Quitevis, “Reorientational and Intermolecular Dynamics in Binary Liquid Mixtures of Hexafluorobenzene and Benzene: Femtosecond Optical Kerr Effect Measurements,” Chem. Phys. Lett. 265, 283–292 (1997).
[CrossRef]

Reilly, T.

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

Righini, R.

R. Righini, “Ultrafast Optical Kerr Effect in Liquids and Solids,” Science 262, 1386–1390 (1993).
[CrossRef] [PubMed]

Scodinu, A.

A. Scodinu and J. T. Fourkas, “Intermolecular Dynamics and structure of Carbon Disulfide in Isoviscous Alkane Solutions: An Optical Kerr Effect Study,” J. Phys. Chem. B 107, 44–51 (2003).
[CrossRef]

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

Shimada, Y.

S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
[CrossRef]

Shirota, H.

H. Shirota and E. W. Castner, “Ultrafast Dynamics in Aqueous Polyacrylamide Solutions,” J. Am. Chem. Soc. 123, 12877–12885 (2001).
[CrossRef] [PubMed]

Simon, J. D.

Y. J. Chang, P. Cong, and J. D. Simon, “Isotropic and Anisotropic Intermolecular Dynamics of Liquids Studied by Femtosecond Position-Sensitive Kerr Lens Spectroscopy,” J. Chem. Phys. 106, 8639–8649 (1997).
[CrossRef]

P. Cong, Y. J. Chang, and J. D. Simon, “Complete Determination of Intermolecular Spectral Densities of Liquids Using Position-Sensitive Kerr Lens Spectroscopy,” J. Phys. Chem. 100, 8613–8616 (1996).
[CrossRef]

Smith, N. A.

N. A. Smith and S. R. Meech, “Optically-Heterodyne-Detected Optical Kerr Effect (OHD-OKE): Applications in Condensed Phase Dynamics,” Int. Rev. Phys. Chem. 21, 75–100 (2002).
[CrossRef]

Steffen, T.

T. Steffen, N. A. C. M. Meinders, and K. Duppen, “Microscopic Origin of the Optical Kerr Effect Response of CS2-Pentane Binary Mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[CrossRef]

Stevens, A. L.

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

Tokmakoff, A.

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

C. J. Fecko, J. D. Eaves, and A. Tokmakoff, “Isotropic and Anisotropic Raman Scattering from Molecular Liquids Measured by Spatially Masked Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[CrossRef]

Trebino, R.

Zhu, X.

X. Zhu, R. A. Farrer, and J. T. Fourkas, “Optical Kerr Effect Spectroscopy Using Time-Delayed Pairs of Pump Pulses with Orthogonal Polarizations,” J. Phys. Chem. B 109, 8481–8488 (2005).
[CrossRef]

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

Acc. Chem. Res. (1)

R. A. Farrer and J. T. Fourkas, “Orientational Dynamics of Liquids Confined in Nanoporous Sol-Gel Glasses Studied by Optical Kerr Effect Spectroscopy,” Acc. Chem. Res. 36, 605–612 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett. (3)

M. Neelakandan, D. Pant, and E. L. Quitevis, “Reorientational and Intermolecular Dynamics in Binary Liquid Mixtures of Hexafluorobenzene and Benzene: Femtosecond Optical Kerr Effect Measurements,” Chem. Phys. Lett. 265, 283–292 (1997).
[CrossRef]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond Laser-Induced Optical Kerr Dynamics in CS2/Alkane Binary Solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

J. D. Eaves, C. J. Fecko, A. L. Stevens, P. Peng, and A. Tokmakoff, “Polarization-Selective Femtosecond Raman Spectroscopy of Low-Frequency Motions in Hydrated Protein Films,” Chem. Phys. Lett. 376, 20–25 (2003).
[CrossRef]

Int. J. Mod. Phys. B (1)

S. Kinoshita, Y. Kai, T. Ariyoshi, and Y. Shimada, “Low Frequency Modes Probed by Time-Domain Optical Kerr Effect Spectroscopy,” Int. J. Mod. Phys. B 10, 1229–1272 (1996).
[CrossRef]

Int. Rev. Phys. Chem. (1)

N. A. Smith and S. R. Meech, “Optically-Heterodyne-Detected Optical Kerr Effect (OHD-OKE): Applications in Condensed Phase Dynamics,” Int. Rev. Phys. Chem. 21, 75–100 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

H. Shirota and E. W. Castner, “Ultrafast Dynamics in Aqueous Polyacrylamide Solutions,” J. Am. Chem. Soc. 123, 12877–12885 (2001).
[CrossRef] [PubMed]

J. Chem. Phys. (8)

N. T. Hunt and S. R. Meech, “Orientational and Interaction Induced Dynamics in the Isotropic Phase of a Liquid Crystal: Polarization Resolved Ultrafast Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 120, 10828–10836 (2004).
[CrossRef] [PubMed]

R. L. Murry and J. T. Fourkas, “Polarization Selectivity of Non-resonant Spectroscopies in Isotropic Media,” J. Chem. Phys. 107, 9726–9740 (1997).
[CrossRef]

B. J. Loughnane, A. Scodinu, R. A. Farrer, J. T. Fourkas, and U. Mohanty, “Exponential Intermolecular Dynamics in Optical Kerr Effect Spectroscopy of Small-Molecule Liquids,” J. Chem. Phys. 111, 2686–2694 (1999).
[CrossRef]

C. J. Fecko, J. D. Eaves, and A. Tokmakoff, “Isotropic and Anisotropic Raman Scattering from Molecular Liquids Measured by Spatially Masked Optical Kerr Effect Spectroscopy,” J. Chem. Phys. 117, 1139–1154 (2002).
[CrossRef]

Y. J. Chang, P. Cong, and J. D. Simon, “Isotropic and Anisotropic Intermolecular Dynamics of Liquids Studied by Femtosecond Position-Sensitive Kerr Lens Spectroscopy,” J. Chem. Phys. 106, 8639–8649 (1997).
[CrossRef]

R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas, “Level-Dependent Damping in Intermolecular Vibrations: Linear Spectroscopy,” J. Chem. Phys. 106, 6901–6915 (1997).
[CrossRef]

R. L. Murry, J. T. Fourkas, and T. Keyes, “Non-resonant Intermolecular Spectroscopy Beyond the Placzek Approximation. I. Third-Order Spectroscopy,” J. Chem. Phys. 109, 2814–2825 (1998).
[CrossRef]

E. B. Bradley, M. S. Mathur, and C. A. Frenzel, “New Measurements of the Infrared and the Raman Spectrum of S2Cl2,” J. Chem. Phys. 47, 4325–4329 (1967).
[CrossRef]

J. Mol. Liq. (1)

E. W. Castner and M. Maroncelli, “Solvent Dynamics Derived from Optical Kerr Effect, Dielectric Dispersion, and Time-Resolved Stokes Shift Measurements: An Empirical Comparison,” J. Mol. Liq. 77, 1–36 (1998).
[CrossRef]

J. Mol. Struct. (1)

S. G. Frankiss, “Vibrational Spectra and Structures of S2Cl2, S2Br2, Se2Cl2, and Se2Br2,” J. Mol. Struct. 2, 271–279 (1968).
[CrossRef]

J. Phys. Chem. (2)

P. Cong, Y. J. Chang, and J. D. Simon, “Complete Determination of Intermolecular Spectral Densities of Liquids Using Position-Sensitive Kerr Lens Spectroscopy,” J. Phys. Chem. 100, 8613–8616 (1996).
[CrossRef]

D. McMorrow and W. T. Lotshaw, “Intermolecular Dynamics in Acetonitrile Probed with Femtosecond Fourier Transform Raman Spectroscopy,” J. Phys. Chem. 95, 10395–10406 (1991).
[CrossRef]

J. Phys. Chem. A (1)

T. Steffen, N. A. C. M. Meinders, and K. Duppen, “Microscopic Origin of the Optical Kerr Effect Response of CS2-Pentane Binary Mixtures,” J. Phys. Chem. A 102, 4213–4221 (1998).
[CrossRef]

J. Phys. Chem. B (6)

A. Scodinu and J. T. Fourkas, “Intermolecular Dynamics and structure of Carbon Disulfide in Isoviscous Alkane Solutions: An Optical Kerr Effect Study,” J. Phys. Chem. B 107, 44–51 (2003).
[CrossRef]

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast Dynamics in Microemulsions: Optical Kerr Effect Study of the Dispersed Oil Phase in a Carbon Disulfide-Dodecyltrimethylammonium Bromide-Water Microemulsion,” J. Phys. Chem. B 107, 3405–3418 (2003).
[CrossRef]

N. T. Hunt, A. A. Jaye, A. Hellman, and S. R. Meech, “Ultrafast Dynamics of Styrene Microemulsions, Polystyrene Nanolatexes, and Structural Analogues of Polystyrene,” J. Phys. Chem. B 108, 100–108 (2004).
[CrossRef]

B. J. Loughnane, R. A. Farrer, A. Scodinu, T. Reilly, and J. T. Fourkas, “Ultrafast Spectroscopic Studies of the Dynamics of Liquids Confined in Nanoporous Glasses,” J. Phys. Chem. B 104, 5421–5429 (2000).
[CrossRef]

X. Zhu, R. A. Farrer, E. Gershgoren, H. C. Kapteyn, and J. T. Fourkas, “Mode-Selective Optical Kerr Effect Spectroscopy,” J. Phys. Chem. B 108, 3384–3386 (2004).
[CrossRef]

X. Zhu, R. A. Farrer, and J. T. Fourkas, “Optical Kerr Effect Spectroscopy Using Time-Delayed Pairs of Pump Pulses with Orthogonal Polarizations,” J. Phys. Chem. B 109, 8481–8488 (2005).
[CrossRef]

Opt. Commun. (1)

D. McMorrow, “Separation of Nuclear and Electronic Contributions to Femtosecond Four-Wave Mixing Data,” Opt. Commun. 86, 236–244 (1991).
[CrossRef]

Opt. Lett. (1)

Science (1)

R. Righini, “Ultrafast Optical Kerr Effect in Liquids and Solids,” Science 262, 1386–1390 (1993).
[CrossRef] [PubMed]

Other (1)

J. T. Fourkas, “Non-resonant Intermolecular Spectroscopy of Liquids,” in Ultrafast Infrared and Raman Spectroscopy, M. D. Fayer, ed. (Marcel Dekker, New York, 2001), pp. 473–512.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for ARKS. HWP = half-wave plate, Pol = polarizer, QWP = quarter-wave plate, PBC = polarizing beam cube, oe-15-11-6561-i001 = vertical polarization, ↔ = horizontal polarization. Blue denotes polarizations before the sample and red polarizations after the sample. The mirror in the green block can be removed to measure the depolarized OKE response.

Fig. 2.
Fig. 2.

Pathways through which horizontally-polarized light that enters the ARKS apparatus can exit in the direction in which the signal is detected. Reflections of the predominantly transmitted horizontal polarization are indicated with red arrows.

Fig. 3.
Fig. 3.

Normalized ARKS data for CS2 under difference polarization conditions. The data have been offset vertically for clarity.

Fig. 4.
Fig. 4.

Normalized ARKS data for S2Cl2 under difference polarization conditions. The data have been offset vertically for clarity.

Fig. 5.
Fig. 5.

Depolarized and isotropic OKE power spectra for S2Cl2. The two spectra are not to scale.

Fig. 6.
Fig. 6.

Normalized S2Cl2 ARKS data for the xxxx and yyxx tensor elements, as well as scans in which these tesnor elements are optically subtracted with different time shifts to enhance or suppress the contribution of the v 3 mode.

Metrics