Abstract

We demonstrate optical interferometry beyond the limits imposed by the photon wavelength using 'triggered' entangled photon pairs from a semiconductor quantum dot. Interference fringes of the entangled biphoton state reveals a periodicity half of that obtained with the single photon, and much less than that of the pump laser. High fringe visibility indicates that biphoton interference is less sensitive to decoherence than interference of two sequential single photons. The results suggest that quantum interferometry may be possible using a semiconductor LED-like device.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
    [CrossRef]
  2. E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999).
    [CrossRef]
  3. E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002).
    [CrossRef] [PubMed]
  4. P. Walther,  et al., "De Broglie wavelength of a non-local four-photon state," Nature 429, 158 (2004).
    [CrossRef] [PubMed]
  5. G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
    [CrossRef] [PubMed]
  6. A. N. Boto,  et al., "Interferometric Optical Lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
    [CrossRef] [PubMed]
  7. V. Giovannetti,  et al., "Quantum-enhanced measurements: Beating the standard quantum limit," Science 306, 1330 (2004).
    [CrossRef] [PubMed]
  8. R. M Stevenson et al., "A semiconductor source of triggered entangled photon pairs," Nature 439, 179 (2006).
    [CrossRef] [PubMed]
  9. R. J. Young,  et al., "Improved fidelity of triggered entangled photons from single quantum dots," New J. Phys. 8, 29 (2006).
    [CrossRef]
  10. C. Santori,  et al., "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
    [CrossRef] [PubMed]
  11. A. J. Bennett,  et al., "Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source," Opt. Express 13, 7772 (2005).
    [CrossRef] [PubMed]
  12. D. Fattal,  et al., "Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source," Phys. Rev. Lett. 92, 037903 (2004).
    [CrossRef] [PubMed]
  13. R. M. Stevenson,  et al., "Quantum dots as a photon source for passive quantum key encoding," Phys. Rev. B 66, 081302 (2002).
    [CrossRef]
  14. C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
    [CrossRef]
  15. S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
    [CrossRef]
  16. R. J. Young,  et al., "Inversion of exciton level splitting in quantum dots," Phys. Rev. B 72, 113305 (2005).
    [CrossRef]
  17. R. M. Stevenson,  et al., "Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots," Phys. Rev. B 73, 033306 (2006).
    [CrossRef]
  18. D. J. P. Ellis,  et al., "Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 90, 011907 (2007).
    [CrossRef]
  19. R. Seguin,  et al., "Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots," Appl. Phys. Lett. 89, 263109 (2006).
    [CrossRef]
  20. S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
    [CrossRef]
  21. B. D. Geradot,  et al., "Manipulating exciton fine-structure in quantum dot with a lateral electric field," Appl. Phys. Lett. 90, 041101 (2007).
    [CrossRef]
  22. K. Kowalik,  et al., "Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots," Appl. Phys. Lett. 86, 041907 (2005).
    [CrossRef]
  23. N. Akopian,  et al., "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett 96, 13501 (2006).
    [CrossRef]
  24. Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001).
    [CrossRef]
  25. In order to reduce noise from power fluctuations, the phase delay was swept repeatedly, and the directly measured biphoton intensity averaged.
  26. T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003).
    [CrossRef]
  27. Z. Yuan,  et al., "Electrically driven single-photon source," Science 295, 102-105 (2002).
    [CrossRef]

2007 (2)

D. J. P. Ellis,  et al., "Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 90, 011907 (2007).
[CrossRef]

B. D. Geradot,  et al., "Manipulating exciton fine-structure in quantum dot with a lateral electric field," Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

2006 (7)

R. Seguin,  et al., "Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots," Appl. Phys. Lett. 89, 263109 (2006).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

N. Akopian,  et al., "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett 96, 13501 (2006).
[CrossRef]

G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

R. M Stevenson et al., "A semiconductor source of triggered entangled photon pairs," Nature 439, 179 (2006).
[CrossRef] [PubMed]

R. J. Young,  et al., "Improved fidelity of triggered entangled photons from single quantum dots," New J. Phys. 8, 29 (2006).
[CrossRef]

R. M. Stevenson,  et al., "Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots," Phys. Rev. B 73, 033306 (2006).
[CrossRef]

2005 (3)

R. J. Young,  et al., "Inversion of exciton level splitting in quantum dots," Phys. Rev. B 72, 113305 (2005).
[CrossRef]

A. J. Bennett,  et al., "Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source," Opt. Express 13, 7772 (2005).
[CrossRef] [PubMed]

K. Kowalik,  et al., "Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots," Appl. Phys. Lett. 86, 041907 (2005).
[CrossRef]

2004 (3)

D. Fattal,  et al., "Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source," Phys. Rev. Lett. 92, 037903 (2004).
[CrossRef] [PubMed]

V. Giovannetti,  et al., "Quantum-enhanced measurements: Beating the standard quantum limit," Science 306, 1330 (2004).
[CrossRef] [PubMed]

P. Walther,  et al., "De Broglie wavelength of a non-local four-photon state," Nature 429, 158 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003).
[CrossRef]

2002 (5)

Z. Yuan,  et al., "Electrically driven single-photon source," Science 295, 102-105 (2002).
[CrossRef]

R. M. Stevenson,  et al., "Quantum dots as a photon source for passive quantum key encoding," Phys. Rev. B 66, 081302 (2002).
[CrossRef]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002).
[CrossRef] [PubMed]

C. Santori,  et al., "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

2001 (1)

Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001).
[CrossRef]

2000 (1)

A. N. Boto,  et al., "Interferometric Optical Lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

1999 (1)

E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999).
[CrossRef]

1995 (1)

J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
[CrossRef]

Akopian, N.

N. Akopian,  et al., "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett 96, 13501 (2006).
[CrossRef]

Bacher, G.

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

Barnes, C. H. W.

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003).
[CrossRef]

Bennett, A. J.

Björk, G.

J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
[CrossRef]

Boto, A. N.

A. N. Boto,  et al., "Interferometric Optical Lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Bouwmeester, D.

G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Chuang, I.

J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
[CrossRef]

Edamatsu, E.

E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002).
[CrossRef] [PubMed]

Eisenberg, H. S.

G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Ellis, D. J. P.

D. J. P. Ellis,  et al., "Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 90, 011907 (2007).
[CrossRef]

Fattal, D.

D. Fattal,  et al., "Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source," Phys. Rev. Lett. 92, 037903 (2004).
[CrossRef] [PubMed]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

Fonesca, E. J. S.

G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999).
[CrossRef]

Forchel, A.

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

Geradot, B. D.

B. D. Geradot,  et al., "Manipulating exciton fine-structure in quantum dot with a lateral electric field," Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

Giovannetti, V.

V. Giovannetti,  et al., "Quantum-enhanced measurements: Beating the standard quantum limit," Science 306, 1330 (2004).
[CrossRef] [PubMed]

Högele, A.

S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Itoh, T.

E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002).
[CrossRef] [PubMed]

Jocobson, J.

J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
[CrossRef]

Karrai, K.

S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Khoury, G.

G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Kim, Y.-H.

Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001).
[CrossRef]

Kowalik, K.

K. Kowalik,  et al., "Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots," Appl. Phys. Lett. 86, 041907 (2005).
[CrossRef]

Kroner, M.

S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001).
[CrossRef]

Michler, P.

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

Milburn, G. J.

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003).
[CrossRef]

Monken, C. H.

E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999).
[CrossRef]

Pádua, S.

E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999).
[CrossRef]

Pelton, M.

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

Santori, C.

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

C. Santori,  et al., "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

Seguin, R.

R. Seguin,  et al., "Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots," Appl. Phys. Lett. 89, 263109 (2006).
[CrossRef]

Seidl, S.

S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

Shih, Y.

Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001).
[CrossRef]

Shimizu, R.

E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002).
[CrossRef] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

Stace, T. M.

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003).
[CrossRef]

Stevenson, R. M.

R. M. Stevenson,  et al., "Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots," Phys. Rev. B 73, 033306 (2006).
[CrossRef]

R. M. Stevenson,  et al., "Quantum dots as a photon source for passive quantum key encoding," Phys. Rev. B 66, 081302 (2002).
[CrossRef]

Strauf, S.

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

Ulrich, S.

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

Walther, P.

P. Walther,  et al., "De Broglie wavelength of a non-local four-photon state," Nature 429, 158 (2004).
[CrossRef] [PubMed]

Yamamoto, Y.

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
[CrossRef]

Young, R. J.

R. J. Young,  et al., "Improved fidelity of triggered entangled photons from single quantum dots," New J. Phys. 8, 29 (2006).
[CrossRef]

R. J. Young,  et al., "Inversion of exciton level splitting in quantum dots," Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Yuan, Z.

Z. Yuan,  et al., "Electrically driven single-photon source," Science 295, 102-105 (2002).
[CrossRef]

Appl. Phys. Lett. (6)

S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003).
[CrossRef]

D. J. P. Ellis,  et al., "Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 90, 011907 (2007).
[CrossRef]

R. Seguin,  et al., "Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots," Appl. Phys. Lett. 89, 263109 (2006).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006).
[CrossRef]

B. D. Geradot,  et al., "Manipulating exciton fine-structure in quantum dot with a lateral electric field," Appl. Phys. Lett. 90, 041101 (2007).
[CrossRef]

K. Kowalik,  et al., "Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots," Appl. Phys. Lett. 86, 041907 (2005).
[CrossRef]

Nature (3)

P. Walther,  et al., "De Broglie wavelength of a non-local four-photon state," Nature 429, 158 (2004).
[CrossRef] [PubMed]

R. M Stevenson et al., "A semiconductor source of triggered entangled photon pairs," Nature 439, 179 (2006).
[CrossRef] [PubMed]

C. Santori,  et al., "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002).
[CrossRef] [PubMed]

New J. Phys. (1)

R. J. Young,  et al., "Improved fidelity of triggered entangled photons from single quantum dots," New J. Phys. 8, 29 (2006).
[CrossRef]

Opt. Express (1)

Phys. Rev. A. (1)

Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001).
[CrossRef]

Phys. Rev. B (5)

T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003).
[CrossRef]

R. J. Young,  et al., "Inversion of exciton level splitting in quantum dots," Phys. Rev. B 72, 113305 (2005).
[CrossRef]

R. M. Stevenson,  et al., "Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots," Phys. Rev. B 73, 033306 (2006).
[CrossRef]

R. M. Stevenson,  et al., "Quantum dots as a photon source for passive quantum key encoding," Phys. Rev. B 66, 081302 (2002).
[CrossRef]

C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002).
[CrossRef]

Phys. Rev. Lett (1)

N. Akopian,  et al., "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett 96, 13501 (2006).
[CrossRef]

Phys. Rev. Lett. (6)

G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

A. N. Boto,  et al., "Interferometric Optical Lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

D. Fattal,  et al., "Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source," Phys. Rev. Lett. 92, 037903 (2004).
[CrossRef] [PubMed]

J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995).
[CrossRef]

E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999).
[CrossRef]

E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002).
[CrossRef] [PubMed]

Science (2)

V. Giovannetti,  et al., "Quantum-enhanced measurements: Beating the standard quantum limit," Science 306, 1330 (2004).
[CrossRef] [PubMed]

Z. Yuan,  et al., "Electrically driven single-photon source," Science 295, 102-105 (2002).
[CrossRef]

Other (1)

In order to reduce noise from power fluctuations, the phase delay was swept repeatedly, and the directly measured biphoton intensity averaged.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a). Energy level diagram of radiative decay of biexciton state in a quantum dot. (b). Schematic of a biphoton interferometer.

Fig. 2.
Fig. 2.

Normalised intensity of classical single photons (black) and normalised biphoton intensity of entangled photon pairs (blue) as a function of the phase delay.

Fig. 3.
Fig. 3.

Biphoton inteferogram for the pure classical state |V XX V X〉 (black), and a mixed classical state from an unentangled dot (red). The mixed state is polarisation correlated, with strong components |V XX V X and |H XX H X. The interferogram for the entangled state (blue) shows half the period, and double the visibility compared to the pure and mixed classical states respectively.

Metrics