Abstract

We study the formation and the propulsion properties of chains of dielectric microspheres in the evanescent field of a channel waveguide made by Cs + ion-exchange. Particle chains are shown to move faster than single particles. We exploit counter-propagating waves for axial positioning of single and chains of microspheres. The particles can be propelled back and forth at will, and trapped at a given point for several minutes. We demonstrate that this technique can also be used to assemble a long, one-particle wide, chain.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Andersson and A. van den Berg, "Microfluidic devices for cellomics: a review," Sens. Actuators B 92, 315- 325 (2003).
    [CrossRef]
  2. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  3. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
    [CrossRef]
  4. C. L. Kuyper and D. T. Chiu, "Optical Trapping: a Versatile Technique for Biomanipulation," Appl. Spectrosc. 56, 300A-321A (2002).
    [CrossRef]
  5. K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
    [CrossRef] [PubMed]
  6. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996).
    [CrossRef] [PubMed]
  7. V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
    [CrossRef]
  8. P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 22116-1-22116-3 (2006).
    [CrossRef]
  9. C. D. Mellor and C. D. Bain, "Array Formation in Evanescent Waves," ChemPhysChem 7, 329-332 (2006).
    [CrossRef]
  10. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
    [CrossRef]
  11. V. Garces-Chavez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106-1-031106-3 (2005).
    [CrossRef]
  12. E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
    [CrossRef] [PubMed]

2006 (1)

C. D. Mellor and C. D. Bain, "Array Formation in Evanescent Waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

2005 (1)

2004 (2)

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

2003 (3)

H. Andersson and A. van den Berg, "Microfluidic devices for cellomics: a review," Sens. Actuators B 92, 315- 325 (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
[CrossRef]

2002 (1)

2000 (1)

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

1996 (1)

Andersson, H.

H. Andersson and A. van den Berg, "Microfluidic devices for cellomics: a review," Sens. Actuators B 92, 315- 325 (2003).
[CrossRef]

Ashili, S. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

Astratov, V. N.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

Bain, C. D.

C. D. Mellor and C. D. Bain, "Array Formation in Evanescent Waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

Brenner, M. P.

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Chiu, D. T.

Daria, V. R.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 22116-1-22116-3 (2006).
[CrossRef]

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106-1-031106-3 (2005).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Eriksen, R. L.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
[CrossRef]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

Garces-Chavez, V.

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 22116-1-22116-3 (2006).
[CrossRef]

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106-1-031106-3 (2005).
[CrossRef]

Gluckstad, J.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
[CrossRef]

Grier, D. G.

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Grujic, K.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

Hellesø, O. G.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

Hole, J. P.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

Kawata, S.

Kuyper, C. L.

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Mellor, C. D.

C. D. Mellor and C. D. Bain, "Array Formation in Evanescent Waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

Reece, P. J.

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 22116-1-22116-3 (2006).
[CrossRef]

Rodrigo, P. J.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106-1-031106-3 (2005).
[CrossRef]

Squires, T. M.

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Tani, T.

van den Berg, A.

H. Andersson and A. van den Berg, "Microfluidic devices for cellomics: a review," Sens. Actuators B 92, 315- 325 (2003).
[CrossRef]

Wilkinson, J. S.

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

Appl. Spectrosc. (1)

ChemPhysChem (1)

C. D. Mellor and C. D. Bain, "Array Formation in Evanescent Waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, "Optical Propulsion of Microspheres along a Channel Waveguide Produced by Cs+ Ion-exchange in Glass," Opt. Commun. 239, 227-235 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface," Phys. Rev. Lett. 85, 3317-3320 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad, "Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation," Bioeng. Bioinsp. Syst., Proc. SPIE 5119, 54-59 (2003).
[CrossRef]

Sens. Actuators B (1)

H. Andersson and A. van den Berg, "Microfluidic devices for cellomics: a review," Sens. Actuators B 92, 315- 325 (2003).
[CrossRef]

Other (2)

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106-1-031106-3 (2005).
[CrossRef]

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 22116-1-22116-3 (2006).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (2435 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Bi-sphere and single particle velocities as function of fibre output power for 7 μm diameter spheres. The difference between the bi-sphere velocity and the corresponding single particle velocity is calculated for each pair. The inset shows a single microsphere A and a bi-sphere BC on top of the waveguide (dark field illumination mode of the microscope).

Fig. 3.
Fig. 3.

Measured bi-sphere velocity as function of the corresponding single particle velocity for 7 μm diameter spheres. The given line has a slope of 1.15.

Fig. 4.
Fig. 4.

Light scattered by a particle on a waveguide illuminated by counter-propagating waves. The two hotspots are the light scattered from the front and rear of the particle due to the propagating and counterpropagating waves, respectively. The white light illumination of the microscope was turned off, so the particle is not visible.

Fig. 5.
Fig. 5.

Movie (2.5 MB) of a 12 μm diameter particle on top of a Cs + ion-exchanged waveguide illuminated by counter-propagating evanescent waves. We used bright field illumination mode of the microscope. The light scattered from the front and rear of the particle is due to the propagating and counterpropagating waves, respectively. A filter inserted to cut off the scattered laser light is taken out occasionally, to allow visualisation of the counter-propagating waves and their mutual power ratio. The movie was sped up 9 times for convenience. [Media 1]

Fig. 6.
Fig. 6.

Particle velocity versus the intensity difference of the scattered light in the front and rear of the 7 μm diameter sphere.

Fig. 7.
Fig. 7.

Formation of a long chain of 7 μm diameter spheres. The images are taken over the same region of the waveguide, ca. every 3 minutes.

Fig. 8.
Fig. 8.

Velocity versus relative particle position along the waveguide.

Metrics