Abstract

We propose an original nonlinear beam cleaning fiber laser architecture to obtain high energy pulses with a good beam quality and a narrow linewidth. The output beam of a large core Er:Yb co-doped multimode fiber amplifier (M2 ~ 6, 220 μJ) is converted into a near diffraction limited beam (M2 = 1.6) through a stimulated Brillouin scattering injection seeded beam cleanup process. We report in this experiment a multimode to single mode conversion efficiency of 50% while preserving the master oscillator linewidth.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  2. C. Codemard, C. Farrell, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilsson., "Milijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fiber Mater-Oscillator Power-Amplifier at 1.55 µm", C. R. Physique 7 (2006) 170-176.
    [CrossRef]
  3. A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "1.2 mJ, 37 ns single-moded pulses at 10 kHz repetition rate from a Q-switched ytterbium fiber laser," CLEO 2004, CMK3
  4. M. Y. Cheng, Y. C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 µm core highly multimode Yb-doped fiber amplifiers," Opt. Lett. 30, 358-360 (2005).
    [CrossRef] [PubMed]
  5. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, "High-energy in-fiber pulse amplification for coherent lidar applications," Opt. Lett. 29, 2590-2592 (2004).
    [CrossRef] [PubMed]
  6. B. M. Flusche, T. G. Alley, T. H. Alley, and W. B. Roh, "Multi-port beam combination and cleanup in large multimode fiber using stimulated Raman scattering," Opt. Express 14, 11748-11755 (2006).
    [CrossRef] [PubMed]
  7. H. Bruesselbach, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, 1993).
  8. B. C. Rodgers, T. H. Russell, and WonB. Roh, "Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber," Opt. Lett. 24, 1124-1126 (1999).
    [CrossRef]
  9. V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and. F. S. Faizullov, JETP. Lett. 14, 344 (1971).
  10. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, and P. Georges, "Beam cleanup in a self-aligned gradient index fiber cavity for high power multimode fiber amplifiers," Opt. Lett. 31, 158-160 (2006).
    [CrossRef] [PubMed]
  11. A. Heuer, and R. Menzel, "Principle of phase conjugation Brillouin mirrors," in : Phase conjugate laser optics, A. Brignon and J. P. Huignard, Eds., John Wiley & Sons, pp. 19-62 (2004).
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).
  13. R. W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
    [CrossRef] [PubMed]
  14. D. Donlagic, and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems," J. Lightwave Technol. 18, 334-342 (2000).
    [CrossRef]
  15. . G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).
  16. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
    [CrossRef]

2006 (3)

2005 (1)

2004 (2)

2000 (1)

1999 (1)

1994 (1)

O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

1990 (1)

R. W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

1978 (1)

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

1971 (1)

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and. F. S. Faizullov, JETP. Lett. 14, 344 (1971).

Alegria, C.

Alley, T. G.

Alley, T. H.

Basov, G.

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

Boot, A. J.

O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Boyd, R. W.

R. W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Brignon, A.

Chang, Y. C.

Changkakoti, R.

Cheng, M. Y.

Codemard, C.

C. Codemard, C. Farrell, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilsson., "Milijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fiber Mater-Oscillator Power-Amplifier at 1.55 µm", C. R. Physique 7 (2006) 170-176.
[CrossRef]

V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, "High-energy in-fiber pulse amplification for coherent lidar applications," Opt. Lett. 29, 2590-2592 (2004).
[CrossRef] [PubMed]

Culshaw, B.

Donlagic, D.

Dupriez, P.

C. Codemard, C. Farrell, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilsson., "Milijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fiber Mater-Oscillator Power-Amplifier at 1.55 µm", C. R. Physique 7 (2006) 170-176.
[CrossRef]

Efimkov, V. F.

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

Farrell, C.

C. Codemard, C. Farrell, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilsson., "Milijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fiber Mater-Oscillator Power-Amplifier at 1.55 µm", C. R. Physique 7 (2006) 170-176.
[CrossRef]

Flusche, B. M.

Galvanauskas, A.

Gatchell, P.

Georges, P.

Huignard, J. P.

Jeong, Y.

Kotov, A. V.

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

Kovalev, V. I.

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and. F. S. Faizullov, JETP. Lett. 14, 344 (1971).

Lallier, E.

Lombard, L.

Mamidipudi, P.

Mikhailov, S. I.

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

Narum, P.

R. W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Nilsson, J.

Payne, D. N.

Pearson, G. N.

Philippov, V.

C. Codemard, C. Farrell, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilsson., "Milijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fiber Mater-Oscillator Power-Amplifier at 1.55 µm", C. R. Physique 7 (2006) 170-176.
[CrossRef]

V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, "High-energy in-fiber pulse amplification for coherent lidar applications," Opt. Lett. 29, 2590-2592 (2004).
[CrossRef] [PubMed]

Popovichev, V. I.

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and. F. S. Faizullov, JETP. Lett. 14, 344 (1971).

Ragul'skii, V. V.

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and. F. S. Faizullov, JETP. Lett. 14, 344 (1971).

Rodgers, B. C.

Roh, W. B.

Russell, T. H.

Rzazewski, K.

R. W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Sahu, J. K.

Smirnov, M. G.

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

van Deventer, O.

O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

Won, T. H.

Zubarev, I. G.

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

C. R. Physique (1)

C. Codemard, C. Farrell, P. Dupriez, V. Philippov, J. K. Sahu, and J. Nilsson., "Milijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fiber Mater-Oscillator Power-Amplifier at 1.55 µm", C. R. Physique 7 (2006) 170-176.
[CrossRef]

J. Lightwave Technol. (2)

D. Donlagic, and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems," J. Lightwave Technol. 18, 334-342 (2000).
[CrossRef]

O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994).
[CrossRef]

JETP Letters (1)

. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, "Inversion of wavefront in SMBS of a depolarized pump," JETP Letters 28, 197 (1978).

JETP. Lett. (1)

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and. F. S. Faizullov, JETP. Lett. 14, 344 (1971).

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

R. W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Other (4)

A. Heuer, and R. Menzel, "Principle of phase conjugation Brillouin mirrors," in : Phase conjugate laser optics, A. Brignon and J. P. Huignard, Eds., John Wiley & Sons, pp. 19-62 (2004).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).

A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "1.2 mJ, 37 ns single-moded pulses at 10 kHz repetition rate from a Q-switched ytterbium fiber laser," CLEO 2004, CMK3

H. Bruesselbach, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of high energy MOPA with seeded SBS beam cleanup. DFB : distributed feedback laser diode; EO : electro-optic modulator; E(Y)DFA : Erbium (Ytterbium) doped fiber amplifier; AOM : Acousto-optic modulator; P1,2 : polarizers.

Fig. 2.
Fig. 2.

Beam cleanup demonstration. From left to right : (a) Incident multimode beam. (b) Stokes reflected beam (LP01 mode). (c) M2 measurement of the Stokes beam.

Fig. 3.
Fig. 3.

Temporal shapes comparison of the pump and Stokes pulses. With no seed the reflected Stokes pulse exhibits strong intensity modulations due to self-pumped SBS scattering (a), whereas the Stokes pulse is smoother when obtained with 8 mW seed power (c). A spectral analysis done with a self-heterodyne method allows the measurement of a 20 MHz linewidth for the unseeded Stokes wave (b) and a near Fourier limited linewidth of ~1 MHz for the seeded Stokes wave (d).

Fig. 4.
Fig. 4.

Reflected Stokes energy as a function of pump energy coupled into the GI fiber. A threshold decrease as well as an efficiency increase is obtained with the seeded SBS configuration. Numerical calculations based on a three-wave model are also plotted for both cases (solid curves).

Fig. 5.
Fig. 5.

(a) Polarization recycling setup. Horizontal and vertical polarizations are split through a Glan polarization beam splitter (PBS) and then recombined. In each arm is placed a 45°. Faraday rotator and a half-wave plate to ensure optical isolation. Both polarizations are coupled in the GI fiber. (b) The polarization recycling allows to increase the multimode energy incident on the GI fiber and to increase the reflected single mode output energy.

Metrics