Abstract

A scattering-free broadband (~120 nm bandwidth) circular polarizer is demonstrated by stacking three chiral polymer films with different pitch lengths. Using 4×4 matrix method, we have theoretically simulated the transmission spectra of each chiral polymer film and the three stacked films. Simulation results agree well with experiment. A broadband circular polarizer with bandwidth ranging from 400 to 736 nm can be achieved by stacking 8 such chiral polymer films together. Simulation results indicate that if a high birefringence (∆n~0.35) polymer film is employed the number of films can be reduced to three. Potential applications of these circular polarizers for liquid crystal displays, optical communications, and optical remote sensors are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  2. M. Xu, F. Xu, and D. K. Yang, “Effects of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
    [CrossRef]
  3. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
    [CrossRef]
  4. A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
    [CrossRef]
  5. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Ind. Acad. Sci. A 41, 130–144 (1956).
  6. T. H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25, 1547–1549 (2000).
    [CrossRef]
  7. Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, “Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band,” Phys. Rev. Lett. 84, 1168–1171 (2000).
    [CrossRef] [PubMed]
  8. J. B. Geddes, A. Lakhtakia, and M. W. Meredith, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 82, 45–47 (2000).
    [CrossRef]
  9. Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30, 367–75 (2003).
    [CrossRef]
  10. P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, “Photonic gaps in cholesteric elastomers under deformation,” Phys. Rev. E,  70, 011703 (2004)
    [CrossRef]
  11. C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
    [CrossRef]
  12. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, New York, 2006).
    [CrossRef]
  13. D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).
  14. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
    [CrossRef]
  15. L. Li and S. M. Faris, “A single-layer super broadband reflective polarizer,” SID Tech. Digest,  37, 111–115 (1996).
  16. M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
    [CrossRef]
  17. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89, 251907 (2006)
    [CrossRef]
  18. Z. Ge, T.X. Wu, X. Zhu, and S. T. Wu, “Reflective liquid crystal displays with asymmetric incidence and exit angles,” J. Opt. Soc. Am. A 22, 966–977 (2005).
    [CrossRef]
  19. Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 ×4 matrix method,” J. Appl. Phys. 93, 2490–2495 (2003).
    [CrossRef]

2006 (2)

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89, 251907 (2006)
[CrossRef]

2005 (1)

2004 (2)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, “Photonic gaps in cholesteric elastomers under deformation,” Phys. Rev. E,  70, 011703 (2004)
[CrossRef]

2003 (2)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30, 367–75 (2003).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 ×4 matrix method,” J. Appl. Phys. 93, 2490–2495 (2003).
[CrossRef]

2001 (1)

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

2000 (3)

Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, “Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band,” Phys. Rev. Lett. 84, 1168–1171 (2000).
[CrossRef] [PubMed]

J. B. Geddes, A. Lakhtakia, and M. W. Meredith, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 82, 45–47 (2000).
[CrossRef]

T. H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25, 1547–1549 (2000).
[CrossRef]

1999 (1)

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

1998 (1)

M. Xu, F. Xu, and D. K. Yang, “Effects of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

1996 (2)

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

L. Li and S. M. Faris, “A single-layer super broadband reflective polarizer,” SID Tech. Digest,  37, 111–115 (1996).

1994 (1)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

1956 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Ind. Acad. Sci. A 41, 130–144 (1956).

Armitage, D.

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, New York, 2006).
[CrossRef]

Belalia, M.

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

Belhakem, M.

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

Binet, C.

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

Bormann, D.

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

Bourgerette, C.

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89, 251907 (2006)
[CrossRef]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Cicuta, P.

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, “Photonic gaps in cholesteric elastomers under deformation,” Phys. Rev. E,  70, 011703 (2004)
[CrossRef]

Coates, D.

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Doane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Faris, S.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

Faris, S. M.

L. Li and S. M. Faris, “A single-layer super broadband reflective polarizer,” SID Tech. Digest,  37, 111–115 (1996).

Gauza, S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

Ge, Z.

Geddes, J. B.

J. B. Geddes, A. Lakhtakia, and M. W. Meredith, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 82, 45–47 (2000).
[CrossRef]

Goulding, M. J.

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Greenfield, S.

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Hammer, J. M.

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Hochbaum, A.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

Hong, Q.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30, 367–75 (2003).
[CrossRef]

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

Huang, Y.

Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 ×4 matrix method,” J. Appl. Phys. 93, 2490–2495 (2003).
[CrossRef]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

Jiang, Y.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

Kim, J. C.

Kim, Y. J.

Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, “Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band,” Phys. Rev. Lett. 84, 1168–1171 (2000).
[CrossRef] [PubMed]

Krallafa, A.

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

Lakhtakia, A.

J. B. Geddes, A. Lakhtakia, and M. W. Meredith, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 82, 45–47 (2000).
[CrossRef]

Lee, G. D.

Li, L.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

L. Li and S. M. Faris, “A single-layer super broadband reflective polarizer,” SID Tech. Digest,  37, 111–115 (1996).

Marden, S. A.

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Mauzac, M.

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

Meredith, M. W.

J. B. Geddes, A. Lakhtakia, and M. W. Meredith, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 82, 45–47 (2000).
[CrossRef]

Mitov, M.

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89, 251907 (2006)
[CrossRef]

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Ind. Acad. Sci. A 41, 130–144 (1956).

Parri, Q. L.

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Patel, J. S.

Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, “Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band,” Phys. Rev. Lett. 84, 1168–1171 (2000).
[CrossRef] [PubMed]

Relaix, S.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89, 251907 (2006)
[CrossRef]

Tajbakhsh, A. R.

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, “Photonic gaps in cholesteric elastomers under deformation,” Phys. Rev. E,  70, 011703 (2004)
[CrossRef]

Terentjev, E. M.

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, “Photonic gaps in cholesteric elastomers under deformation,” Phys. Rev. E,  70, 011703 (2004)
[CrossRef]

Underwood, I.

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, New York, 2006).
[CrossRef]

Vartak, S.

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Wu, S. T.

Z. Ge, T.X. Wu, X. Zhu, and S. T. Wu, “Reflective liquid crystal displays with asymmetric incidence and exit angles,” J. Opt. Soc. Am. A 22, 966–977 (2005).
[CrossRef]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30, 367–75 (2003).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 ×4 matrix method,” J. Appl. Phys. 93, 2490–2495 (2003).
[CrossRef]

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, New York, 2006).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Wu, T. X.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30, 367–75 (2003).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 ×4 matrix method,” J. Appl. Phys. 93, 2490–2495 (2003).
[CrossRef]

Wu, T.X.

Xu, F.

M. Xu, F. Xu, and D. K. Yang, “Effects of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

Xu, M.

M. Xu, F. Xu, and D. K. Yang, “Effects of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

Yang, D. K.

M. Xu, F. Xu, and D. K. Yang, “Effects of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Yoon, T. H.

Zhu, X.

Zhuang, Z. Z.

Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, “Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band,” Phys. Rev. Lett. 84, 1168–1171 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89, 251907 (2006)
[CrossRef]

J. Appl. Phys. (4)

M. Xu, F. Xu, and D. K. Yang, “Effects of cell structure on the reflection of cholesteric liquid crystal displays,” J. Appl. Phys. 83, 1938–1944 (1998).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76, 1331–1333 (1994).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, “Simulations of liquid-crystal Fabry-Perot etalons by an improved 4 ×4 matrix method,” J. Appl. Phys. 93, 2490–2495 (2003).
[CrossRef]

C. Binet, M. Mitov, and M. Mauzac, “Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals,” J. Appl. Phys. 90, 1730–1734 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
[CrossRef]

Liq. Cryst. (1)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30, 367–75 (2003).
[CrossRef]

Opt. Commun. (1)

J. B. Geddes, A. Lakhtakia, and M. W. Meredith, “Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals,” Opt. Commun. 82, 45–47 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (2)

M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, “Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure,” Phys. Rev. E 74, 051704 (2006).
[CrossRef]

P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, “Photonic gaps in cholesteric elastomers under deformation,” Phys. Rev. E,  70, 011703 (2004)
[CrossRef]

Phys. Rev. Lett. (1)

Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, “Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band,” Phys. Rev. Lett. 84, 1168–1171 (2000).
[CrossRef] [PubMed]

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Ind. Acad. Sci. A 41, 130–144 (1956).

SID Tech. Digest (2)

L. Li and S. M. Faris, “A single-layer super broadband reflective polarizer,” SID Tech. Digest,  37, 111–115 (1996).

A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, “Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement,” SID Tech. Digest,  40, 1063–1066 (1999).
[CrossRef]

SID Tech. Digest Application Session (1)

D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, “High performance wide-band reflective cholesteric polarizers,” SID Tech. Digest Application Session 27, 67–70 (1996).

Other (2)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, New York, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Transmittance spectra of chiral polymer films: red, green and blue lines represent the transmittance spectrum of film1, 2, and 3, respectively.

Fig. 2.
Fig. 2.

Transmittance spectrum of a circular polarizer with three stacked chiral polymer films.

Fig. 3.
Fig. 3.

Schematic of the experimental setup for measuring the extinction ratio of the circular polarizer composed of three chiral polymer films. WL: white light source; BS: beam splitter; CPF: chiral polymer film; P: polarizer; QW: quarter wave plate; S: spectrometer

Fig. 4.
Fig. 4.

Reflection spectra of the circular polarizer at normal angle incidence. Red and black lines represent the bright and dark states, respectively.

Fig. 5.
Fig. 5.

Simulation results of the transmission spectra through each chiral polymer film.

Fig. 6.
Fig. 6.

Simulation (a) and experimental (b) results of the circular polarizer composed of 3 chiral polymer films.

Fig. 7.
Fig. 7.

Simulation result of a broadband circular polarizer by stacking 8 chiral polymer films together.

Metrics