Abstract

An ultra long high resolution beam with extension of depth of focus (DoF) in the axial direction as well as high resolution in the transverse direction has been demonstrated by a seven-zone rotationally symmetrical complex pupil filter imposed at the aperture of a focusing lens. Both amplitude and phase of the transmitted light are modulated in different zones. The scalar diffraction theory is used to optimize the zone parameters. Simulation results show that extended DoF of the beam is increased by 16 times while the spot size at the beam waist is reduced to 0.7 times.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  2. G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento, Suppl. 9, 426-435 (1952).
    [CrossRef]
  3. C. J. R. Sheppard and Z. S. Hegedus, "Axial behavior of pupil-plane filters," J. Opt. Soc. Am. A 5, 643-647 (1988).
    [CrossRef]
  4. W. T. Welford, "Use of annular aperture to increase focal depth," J. Opt. Soc. Am. A 50,749-753 (1960).
    [CrossRef]
  5. H. Ando, "Phase-shifting apodizer of three or more portions," Jpn. J. Appl. Phys. 31,557-567 (1992).
    [CrossRef]
  6. T. R. M. Sales and G. M. Morris, "Fundamental limits of optical superresolution," Opt. Lett. 22, 582-584 (1997).
    [CrossRef] [PubMed]
  7. C. J. R. Sheppard, G. Calvert, and M. Wheatland, "Focal distribution for superresolving toraldo filters," J. Opt. Soc. Am. A 15, 849-856 (1998).
    [CrossRef]
  8. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000).
    [CrossRef]
  9. H. Wang and F. Gan, "High focal depth with a pure-phase apodizer," Appl. Opt. 40, 5658-5662 (2001).
    [CrossRef]
  10. H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
    [CrossRef]
  11. M. Yun, L. Liu, J. Sun and D. Liu, "Three-dimensional superresolution by three-zone complex pupil filters," J. Opt. Soc. Am. A 22, 272-277 (2005).
    [CrossRef]
  12. T. R. M. Sales and G. M. Morris, "Diffractive superresolution elements," J. Opt. Soc. Am. A 14, 1637-1646 (1997).
    [CrossRef]
  13. V. F. Canales and M. P. Cagigal, "Pupil filter design by using a Bessel functions basis at the image plane," Opt. Express 14, 10393-10402 (2006).
    [CrossRef] [PubMed]
  14. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, "Radial mask for imaging systems that exhibit high resolution and extended depths of field," Appl. Opt. 45, 2001-2013 (2006).
    [CrossRef] [PubMed]
  15. C. J. R. Sheppard, "Synthesis of filters for specified axial properties," J. Mod. Optic. 43, 525-536 (1996).
    [CrossRef]
  16. M. Martinez-Corral, M. Caballero, E. H. K. Stelzer, and J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002).
    [PubMed]
  17. J. A. Davis, C. S. Tuvey, O. López-Coronado, J. Campos, M. J. Yzuel, and C. Iemmi, "Tailoring the depth of focus for optical imaging systems using a Fourier transform approach," Opt. Lett. 32, 844-846 (2007).
    [CrossRef] [PubMed]
  18. Z. Zalevsky, A. Shemer, A. Zlotnik, E. B. Eliezer, and E. Marom, "All-optical axial super resolving imaging using a low-frequency binary-phase mask, " Opt. Express 14, 2631-2643 (2006).
    [CrossRef] [PubMed]
  19. D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, "Design of superresolving continuous phase filters," Opt. Lett. 28, 607-609 (2003).
    [CrossRef] [PubMed]
  20. T. Jabbour and S. Kuebler, "Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates," Opt. Express 14, 1033-1043 (2006)
    [CrossRef] [PubMed]

2007 (1)

2006 (5)

2005 (1)

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1998 (1)

1997 (2)

1996 (1)

C. J. R. Sheppard, "Synthesis of filters for specified axial properties," J. Mod. Optic. 43, 525-536 (1996).
[CrossRef]

1992 (1)

H. Ando, "Phase-shifting apodizer of three or more portions," Jpn. J. Appl. Phys. 31,557-567 (1992).
[CrossRef]

1988 (1)

1960 (1)

W. T. Welford, "Use of annular aperture to increase focal depth," J. Opt. Soc. Am. A 50,749-753 (1960).
[CrossRef]

1952 (1)

G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento, Suppl. 9, 426-435 (1952).
[CrossRef]

Ando, H.

H. Ando, "Phase-shifting apodizer of three or more portions," Jpn. J. Appl. Phys. 31,557-567 (1992).
[CrossRef]

Ben-Eliezer, E.

Caballero, M.

Cagigal, M. P.

Calvert, G.

Campos, J.

Canales, V. F.

Chong, T.

H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Davis, J. A.

de Juana, D. M.

Eliezer, E. B.

Gan, F.

Hegedus, Z. S.

Iemmi, C.

Jabbour, T.

Juskaitis, R.

Konforti, N.

Kuebler, S.

Laczik, Z. J.

Liu, D.

Liu, L.

López-Coronado, O.

Marom, E.

Martinez-Corral, M.

Morris, G. M.

Neil, M. A. A.

Oti, J. E.

Sales, T. R. M.

Sarafis, V.

Shemer, A.

Sheppard, C. J. R.

Shi, L.

H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Stelzer, E. H. K.

Sun, J.

Swoger, J.

Tan, W.

H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Toraldo di Francia, G.

G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento, Suppl. 9, 426-435 (1952).
[CrossRef]

Tuvey, C. S.

Wang, H.

H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

H. Wang and F. Gan, "High focal depth with a pure-phase apodizer," Appl. Opt. 40, 5658-5662 (2001).
[CrossRef]

Welford, W. T.

W. T. Welford, "Use of annular aperture to increase focal depth," J. Opt. Soc. Am. A 50,749-753 (1960).
[CrossRef]

Wheatland, M.

Wilson, T.

Yuan, G.

H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Yun, M.

Yzuel, M. J.

Zalevsky, Z.

Zlotnik, A.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Wang, L. Shi, G. Yuan, W. Tan and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

J. Mod. Optic. (1)

C. J. R. Sheppard, "Synthesis of filters for specified axial properties," J. Mod. Optic. 43, 525-536 (1996).
[CrossRef]

J. Opt. Soc. Am. A (5)

Jpn. J. Appl. Phys. (1)

H. Ando, "Phase-shifting apodizer of three or more portions," Jpn. J. Appl. Phys. 31,557-567 (1992).
[CrossRef]

Nuovo Cimento (1)

G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento, Suppl. 9, 426-435 (1952).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the seven-zone complex pupil filter. Only phase changes are shown in this figure.

Fig. 2.
Fig. 2.

(a). 3D PSF and (b). intensity distribution in the focal region of original system and (c). 3D PSF and (d) intensity distribution of the optical system optimized with seven-zone complex pupil filter.

Fig 3.
Fig 3.

Axial intensity distribution in the focal region: (blue line) original system without pupil filter and (magenta line) optimized system with seven-zone pupil filter.

Fig 4.
Fig 4.

Transverse intensity distribution in the focal region: (blue line) original system without pupil filter and (magenta line) optimized system with seven-zone pupil filter.

Tables (1)

Tables Icon

Table 1. Parameters of seven-zone complex pupil filter

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ψ ( η ) = 2 0 1 A ( r ) exp [ i ϕ ( r ) ] J 0 ( η r ) rdr ,
d = λ 2 ( n 1 n 2 ) ,
G ( v , u ) = 2 j = 1 N T j × exp ( i ϕ j ) × r j 1 r j r × J 0 ( vr ) × exp [ iu r 2 2 ] dr ,
v = 2 π λ × NA × R ,
u = 2 π λ × N A 2 × Z ,

Metrics