Abstract

Germano-silicate glass fiber containing gold nanoparticles was developed by modified chemical vapor deposition and solution doping processes. Pumping with 488nm Argon ion laser, we firstly report on the visible to infrared photoluminescence of the gold nanoparticles embedded in the core of the germano-silicate fibers. The surface plasmon resonance absorption peak at 498.4nm and the visible to infrared photoluminescence over the range of 600nm~1560nm were found and explained according to the interband and intraband electronic transitions of Au atoms. The averaged quantum efficiencies of the photoluminescence at 833nm and 1536nm were estimated to be 5.75×10-8 and 2.01×10-9, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Hache, D. Ricard, and C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3, 1647-1655 (1988).
    [CrossRef]
  2. R. F. Haglund,  et al., "Picosecond nonlinear optical response of a Cu:silica nanocluster composite," Opt. Lett. 18, 373-375 (1993).
    [CrossRef] [PubMed]
  3. A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
    [CrossRef]
  4. N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
    [CrossRef]
  5. T. Torounidis, M. Karlsson, and P. A. Andrekson, "Fiber optical parametric amplifier pulse source: theory and experiment," J. Lightwave Technol. 23, 4067-4073 (2005).
    [CrossRef]
  6. S. Radic and C. J. Mckinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
    [CrossRef]
  7. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  8. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
    [CrossRef] [PubMed]
  9. W. T. Wang,  et al., "Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters," Appl. Phys. Lett. 83, 1983-1985 (2003).
    [CrossRef]
  10. D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl. Phys. Lett. 77, 4283-4285 (2000).
    [CrossRef]
  11. V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
    [CrossRef]
  12. S. Dhara,  et al., "Quasiquenching size effects in gold nanoclusters embedded in silica matrix," Chem. Phys. Lett. 370, 254-260 (2003).
    [CrossRef]
  13. S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
    [CrossRef]
  14. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
    [CrossRef]
  15. G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, "Section 4: Physical constants of inorganic compounds," in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
  16. N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
    [CrossRef]
  17. H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000).
    [CrossRef]
  18. P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
    [CrossRef]
  19. F. L. Pedrotti, S. J. and L. S. Pedrotti, "Nature of Light," in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.
  20. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
    [CrossRef]
  21. T. G. Schaaff and R. L. Whetten, "Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions," J. Phys. Chem. B 104, 2630-2641 (2000).
    [CrossRef]
  22. S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
    [CrossRef]
  23. E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
    [CrossRef]
  24. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
    [CrossRef]

2007 (1)

A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
[CrossRef]

2006 (1)

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

2005 (3)

T. Torounidis, M. Karlsson, and P. A. Andrekson, "Fiber optical parametric amplifier pulse source: theory and experiment," J. Lightwave Technol. 23, 4067-4073 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
[CrossRef] [PubMed]

2004 (1)

E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

2003 (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

W. T. Wang,  et al., "Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters," Appl. Phys. Lett. 83, 1983-1985 (2003).
[CrossRef]

S. Dhara,  et al., "Quasiquenching size effects in gold nanoclusters embedded in silica matrix," Chem. Phys. Lett. 370, 254-260 (2003).
[CrossRef]

2002 (3)

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

2001 (1)

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

2000 (3)

H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000).
[CrossRef]

D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl. Phys. Lett. 77, 4283-4285 (2000).
[CrossRef]

T. G. Schaaff and R. L. Whetten, "Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions," J. Phys. Chem. B 104, 2630-2641 (2000).
[CrossRef]

1997 (1)

N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
[CrossRef]

1993 (1)

1988 (2)

F. Hache, D. Ricard, and C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3, 1647-1655 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

1969 (1)

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

Andrekson, P. A.

Beeby, A.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Boo, S.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Bourenko, T.

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
[CrossRef] [PubMed]

Cai, W.

H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000).
[CrossRef]

Charron, E.

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
[CrossRef] [PubMed]

Dalacu, D.

D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl. Phys. Lett. 77, 4283-4285 (2000).
[CrossRef]

Debrus, S.

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

Dhara, S.

S. Dhara,  et al., "Quasiquenching size effects in gold nanoclusters embedded in silica matrix," Chem. Phys. Lett. 370, 254-260 (2003).
[CrossRef]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

El-Sayed, M. A.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

FitzGerald, S.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

F. Hache, D. Ricard, and C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3, 1647-1655 (1988).
[CrossRef]

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
[CrossRef] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Gabai, R.

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, and C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3, 1647-1655 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

Haglund, R. F.

Han, W. -T.

A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
[CrossRef]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Jeong, C.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Jose, G.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Ju, S.

A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
[CrossRef]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Kalpouzos, C.

N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
[CrossRef]

Karlsson, M.

Kim, B. H.

A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
[CrossRef]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Kim, C. J.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

Lin, A.

A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Link, S.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

Loukakos, P. A.

N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
[CrossRef]

Martinu, L.

D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl. Phys. Lett. 77, 4283-4285 (2000).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Mooradian, A.

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

Moustaizis, S. D.

N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
[CrossRef]

Nguyen, V. L.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Palpant, B.

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

Papadogiannis, N. A.

N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
[CrossRef]

Pardo-Yissar, V.

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Picon-Roetzinger, N.

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

Port, D.

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

F. Hache, D. Ricard, and C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3, 1647-1655 (1988).
[CrossRef]

Schaaff, T. G.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

T. G. Schaaff and R. L. Whetten, "Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions," J. Phys. Chem. B 104, 2630-2641 (2000).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Shi, H.

H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000).
[CrossRef]

Shipway, A. N.

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Thomas, V.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Torounidis, T.

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Wang, W. T.

W. T. Wang,  et al., "Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters," Appl. Phys. Lett. 83, 1983-1985 (2003).
[CrossRef]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Watekar, P. R.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

Whetten, R. L.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

T. G. Schaaff and R. L. Whetten, "Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions," J. Phys. Chem. B 104, 2630-2641 (2000).
[CrossRef]

Willner, I.

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

Zhang, L.

H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000).
[CrossRef]

Adv. Mater. (1)

V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001).
[CrossRef]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988).
[CrossRef]

Appl. Phys. B (1)

N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

W. T. Wang,  et al., "Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters," Appl. Phys. Lett. 83, 1983-1985 (2003).
[CrossRef]

D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl. Phys. Lett. 77, 4283-4285 (2000).
[CrossRef]

Bull. Mater. Sci. (1)

P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

S. Dhara,  et al., "Quasiquenching size effects in gold nanoclusters embedded in silica matrix," Chem. Phys. Lett. 370, 254-260 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Nanosci. Nanotechnol. (1)

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002).
[CrossRef]

J. Phys. Chem. B (1)

T. G. Schaaff and R. L. Whetten, "Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions," J. Phys. Chem. B 104, 2630-2641 (2000).
[CrossRef]

Mater. Res. Bull. (1)

H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000).
[CrossRef]

Mater. Sci. and Eng., C (1)

N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002).
[CrossRef]

Nano Lett. (1)

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

Proc. SPIE (1)

A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Other (3)

S. Radic and C. J. Mckinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005).
[CrossRef]

G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, "Section 4: Physical constants of inorganic compounds," in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.

F. L. Pedrotti, S. J. and L. S. Pedrotti, "Nature of Light," in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the measurement setup for photoluminescence of the gold nanoparticles incorporated fiber.

Fig. 2.
Fig. 2.

Experimental absorption spectrum of the germano-silicate fiber incorporated with gold nanoparticles.

Fig. 3.
Fig. 3.

Broadband visible to narrowband infrared photoluminescence (a) and the quantum efficiencies at 833nm and 1536nm (b) of the 30m-long germano-silicate glass fiber incorporated with gold nanoparticles pumping with 488nm

Fig. 4.
Fig. 4.

Solid-state model for the origin of the two PL bands: The high energy band is proposed to be due to radiative interband recombination between the sp and d-bands while the low energy band is thought to originate from radiative intraband transitions within the sp-band cross the HOMO-LUMO gap. Note that intraband recombination has to involve prior nonradiative recombination of the hole in the d-band created after excitation with an (unexcited) electron in the sp-band.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Au ( OH ) 3 + 3 H N O 3 25 ° C Au ( N O 3 ) 3 + 3 H 2 O
2 Au ( N O 3 ) 3 100 ° C Au 2 O 3 + 3 N 2 O 5
2 Au 2 O 3 T 150 ° C 4 Au + 3 O 2
QE = N out N ex I out λ out I ex λ ex
N ( photons m 2 s ) = I λ n h c

Metrics