A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order optical nonlinearity of
germano-silicate glass optical fiber incorporated with Au
nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
S. Radic and C. J. Mckinstrie, “Optical amplification and signal processing in
highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005).
[Crossref]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced
luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]
[PubMed]
T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source:
theory and experiment,” J. Lightwave Technol. 23, 4067–4073 (2005).
[Crossref]
E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Plasmon emission in photoexcited gold
nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]
M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure
through near-field mediated intraband transitions,” Phys.
Rev. B 68, 115433 (2003).
[Crossref]
W. T. Wang, et al., “Resonant absorption
quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by
adding Fe nanoclusters,” Appl. Phys. Lett. 83, 1983–1985 (2003).
[Crossref]
S. Dhara, et al., “Quasiquenching size
effects in gold nanoclusters embedded in silica matrix,” Chem. Phys. Lett. 370, 254–260 (2003).
[Crossref]
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon
resonance of Au/SiO2 nanocomposite films,” Appl.
Phys. Lett. 77, 4283–4285 (2000).
[Crossref]
H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold
nanoparticles within pores of mesoporous silica,” Mat. Res.
Bull. 35, 1689–1691 (2000).
[Crossref]
T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: Intense
optical activity in metal-based transitions,” J. Phys.
Chem. B 104, 2630–2641 (2000).
[Crossref]
N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser
pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339–345 (1997).
[Crossref]
F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles:
surface-mediated resonance and quantum size effects,” J.
Opt. Soc. Am. B 3, 1647–1655 (1988).
[Crossref]
F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles
and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[Crossref]
A. Mooradian, “Photoluminescence of
metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure
through near-field mediated intraband transitions,” Phys.
Rev. B 68, 115433 (2003).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure
through near-field mediated intraband transitions,” Phys.
Rev. B 68, 115433 (2003).
[Crossref]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced
luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]
[PubMed]
H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold
nanoparticles within pores of mesoporous silica,” Mat. Res.
Bull. 35, 1689–1691 (2000).
[Crossref]
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced
luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]
[PubMed]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon
resonance of Au/SiO2 nanocomposite films,” Appl.
Phys. Lett. 77, 4283–4285 (2000).
[Crossref]
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
S. Dhara, et al., “Quasiquenching size
effects in gold nanoclusters embedded in silica matrix,” Chem. Phys. Lett. 370, 254–260 (2003).
[Crossref]
E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Plasmon emission in photoexcited gold
nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced
luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]
[PubMed]
E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Plasmon emission in photoexcited gold
nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles
and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[Crossref]
F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles:
surface-mediated resonance and quantum size effects,” J.
Opt. Soc. Am. B 3, 1647–1655 (1988).
[Crossref]
R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced
luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]
[PubMed]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles
and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[Crossref]
F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles:
surface-mediated resonance and quantum size effects,” J.
Opt. Soc. Am. B 3, 1647–1655 (1988).
[Crossref]
A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order optical nonlinearity of
germano-silicate glass optical fiber incorporated with Au
nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
F. L. Pedrotti, S. J., and L. S. Pedrotti, “Nature of Light,” in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order optical nonlinearity of
germano-silicate glass optical fiber incorporated with Au
nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser
pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339–345 (1997).
[Crossref]
A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order optical nonlinearity of
germano-silicate glass optical fiber incorporated with Au
nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Plasmon emission in photoexcited gold
nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles
and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order optical nonlinearity of
germano-silicate glass optical fiber incorporated with Au
nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser
pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339–345 (1997).
[Crossref]
D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon
resonance of Au/SiO2 nanocomposite films,” Appl.
Phys. Lett. 77, 4283–4285 (2000).
[Crossref]
S. Radic and C. J. Mckinstrie, “Optical amplification and signal processing in
highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005).
[Crossref]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
A. Mooradian, “Photoluminescence of
metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[Crossref]
N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser
pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339–345 (1997).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Plasmon emission in photoexcited gold
nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]
M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure
through near-field mediated intraband transitions,” Phys.
Rev. B 68, 115433 (2003).
[Crossref]
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser
pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339–345 (1997).
[Crossref]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
F. L. Pedrotti, S. J., and L. S. Pedrotti, “Nature of Light,” in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.
F. L. Pedrotti, S. J., and L. S. Pedrotti, “Nature of Light,” in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
S. Radic and C. J. Mckinstrie, “Optical amplification and signal processing in
highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005).
[Crossref]
F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles
and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[Crossref]
F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles:
surface-mediated resonance and quantum size effects,” J.
Opt. Soc. Am. B 3, 1647–1655 (1988).
[Crossref]
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: Intense
optical activity in metal-based transitions,” J. Phys.
Chem. B 104, 2630–2641 (2000).
[Crossref]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold
nanoparticles within pores of mesoporous silica,” Mat. Res.
Bull. 35, 1689–1691 (2000).
[Crossref]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
W. T. Wang, et al., “Resonant absorption
quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by
adding Fe nanoclusters,” Appl. Phys. Lett. 83, 1983–1985 (2003).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: Intense
optical activity in metal-based transitions,” J. Phys.
Chem. B 104, 2630–2641 (2000).
[Crossref]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold
nanoparticles within pores of mesoporous silica,” Mat. Res.
Bull. 35, 1689–1691 (2000).
[Crossref]
V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, “Gold nanoparticle/hydrogel composites with
solvent-switchable electronic properties,” Adv. Mater. 13, 1320–1323 (2001).
[Crossref]
F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles
and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[Crossref]
N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, “Temporal characterization of ultra short laser
pulses based on multiple harmonic generation on a gold surface,” Appl. Phys. B 65, 339–345 (1997).
[Crossref]
W. T. Wang, et al., “Resonant absorption
quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by
adding Fe nanoclusters,” Appl. Phys. Lett. 83, 1983–1985 (2003).
[Crossref]
D. Dalacu and L. Martinu, “Temperature dependence of the surface plasmon
resonance of Au/SiO2 nanocomposite films,” Appl.
Phys. Lett. 77, 4283–4285 (2000).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+
ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25, 69–74 (2002).
[Crossref]
S. Dhara, et al., “Quasiquenching size
effects in gold nanoclusters embedded in silica matrix,” Chem. Phys. Lett. 370, 254–260 (2003).
[Crossref]
S. Radic and C. J. Mckinstrie, “Optical amplification and signal processing in
highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005).
[Crossref]
S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W.-T. Han, “Fabrication and optical characteristics of novel
optical fiber doped with the Au nanoparticles,” J. Nanosci.
Nanotechnol. 6, 3555–3558 (2006).
[Crossref]
S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to infrared luminescence from a 28-atom
gold cluster,” J. Phys. Chem. 106, 3410–3415 (2002).
[Crossref]
T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: Intense
optical activity in metal-based transitions,” J. Phys.
Chem. B 104, 2630–2641 (2000).
[Crossref]
H. Shi, L. Zhang, and W. Cai, “Preparation and optical absorption of gold
nanoparticles within pores of mesoporous silica,” Mat. Res.
Bull. 35, 1689–1691 (2000).
[Crossref]
N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal
nanoparticles,” Mat. Sci. and Eng. C 19, 51–54 (2002).
[Crossref]
R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced
luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[Crossref]
[PubMed]
E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Plasmon emission in photoexcited gold
nanoparticles,” Phys. Rev. B 70, 205424 (2004).
[Crossref]
M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure
through near-field mediated intraband transitions,” Phys.
Rev. B 68, 115433 (2003).
[Crossref]
A. Mooradian, “Photoluminescence of
metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[Crossref]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between the light and
nanoscale objects with gold bowtie nanoantennas,” Phys.
Rev. Lett. 94, 017402 (2005).
[Crossref]
[PubMed]
A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order optical nonlinearity of
germano-silicate glass optical fiber incorporated with Au
nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[Crossref]
F. L. Pedrotti, S. J., and L. S. Pedrotti, “Nature of Light,” in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.
G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, “Section 4: Physical constants of inorganic
compounds,” in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.