Abstract

The knife-edge method is a commonly used technique to characterize the optical profiles of laser beams or focused spots. In this paper, we present a micro knife-edge scanner fabricated in a silicon-on-insulator substrate using the micro-electromechanical-system technology. A photo detector can be fabricated in the device to allow further integration with on-chip signal conditioning circuitry. A novel backside deep reactive ion etching process is proposed to solve the residual stress effect due to the buried oxide layer. Focused optical spot profile measurement is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Khosrofian and B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data," Appl. Opt. 22, 3406-3410 (1983).
    [CrossRef] [PubMed]
  2. A. H. Firester, M. E. Heller, and P. Sheng, "Knife-edge scanning measurements of subwavelength focused light beams," Appl. Opt. 16, 1971-1974 (1976).
    [CrossRef]
  3. F. Zamkotsian and K. Dohlen, "Surface characterization of micro-optical components by Foucault’s knife-edge method: the case of a micromirror array," Appl. Opt. 38, 6532-6539 (1999).
    [CrossRef]
  4. D. Karabacak, T. Kouha, C. C. Huang, and K. L. Ekinci, "Optical knife-edge technique for nanomechanical displacement detection," Appl. Phys. Lett. 88, 193122, 1-3 (2006).
    [CrossRef]
  5. J. Murakowski, M. Cywiak, B. Rosner, and D. van der Weide, "Far field optical imaging with subwavelength resolution," Opt. Commun. 185, 295-303 (2000).
    [CrossRef]
  6. M. Cywiak, M. Servýn, and F. M. Santoyo, "Vibrating knife-edge technique for measuring the focal length of a microlens," Appl. Opt. 40, 4947-4952 (2001).
    [CrossRef]
  7. S. Sumriddetchkajorn and N. A. Riza, "Micro-electro-mechanical system-based digitally controlled optical beam profiler," Appl. Opt. 41, 3506-3510 (2002).
    [CrossRef] [PubMed]

2006

D. Karabacak, T. Kouha, C. C. Huang, and K. L. Ekinci, "Optical knife-edge technique for nanomechanical displacement detection," Appl. Phys. Lett. 88, 193122, 1-3 (2006).
[CrossRef]

2002

2001

2000

J. Murakowski, M. Cywiak, B. Rosner, and D. van der Weide, "Far field optical imaging with subwavelength resolution," Opt. Commun. 185, 295-303 (2000).
[CrossRef]

1999

1983

1976

Cywiak, M.

M. Cywiak, M. Servýn, and F. M. Santoyo, "Vibrating knife-edge technique for measuring the focal length of a microlens," Appl. Opt. 40, 4947-4952 (2001).
[CrossRef]

J. Murakowski, M. Cywiak, B. Rosner, and D. van der Weide, "Far field optical imaging with subwavelength resolution," Opt. Commun. 185, 295-303 (2000).
[CrossRef]

Dohlen, K.

Ekinci, K. L.

D. Karabacak, T. Kouha, C. C. Huang, and K. L. Ekinci, "Optical knife-edge technique for nanomechanical displacement detection," Appl. Phys. Lett. 88, 193122, 1-3 (2006).
[CrossRef]

Firester, A. H.

Garetz, B. A.

Heller, M. E.

Huang, C. C.

D. Karabacak, T. Kouha, C. C. Huang, and K. L. Ekinci, "Optical knife-edge technique for nanomechanical displacement detection," Appl. Phys. Lett. 88, 193122, 1-3 (2006).
[CrossRef]

Karabacak, D.

D. Karabacak, T. Kouha, C. C. Huang, and K. L. Ekinci, "Optical knife-edge technique for nanomechanical displacement detection," Appl. Phys. Lett. 88, 193122, 1-3 (2006).
[CrossRef]

Khosrofian, J. M.

Kouha, T.

D. Karabacak, T. Kouha, C. C. Huang, and K. L. Ekinci, "Optical knife-edge technique for nanomechanical displacement detection," Appl. Phys. Lett. 88, 193122, 1-3 (2006).
[CrossRef]

Murakowski, J.

J. Murakowski, M. Cywiak, B. Rosner, and D. van der Weide, "Far field optical imaging with subwavelength resolution," Opt. Commun. 185, 295-303 (2000).
[CrossRef]

Riza, N. A.

Rosner, B.

J. Murakowski, M. Cywiak, B. Rosner, and D. van der Weide, "Far field optical imaging with subwavelength resolution," Opt. Commun. 185, 295-303 (2000).
[CrossRef]

Santoyo, F. M.

Servýn, M.

Sheng, P.

Sumriddetchkajorn, S.

van der Weide, D.

J. Murakowski, M. Cywiak, B. Rosner, and D. van der Weide, "Far field optical imaging with subwavelength resolution," Opt. Commun. 185, 295-303 (2000).
[CrossRef]

Zamkotsian, F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a scanning knife edge

Fig. 2.
Fig. 2.

Spot profile P(x') and measured signal

Fig. 3.
Fig. 3.

(a). Top view of the micro spot profile measurement system, (b). transmission type, (c). reflection type, (d) absorption type

Fig. 4.
Fig. 4.

Layout of the knife edge scanner in SOI substrates

Fig. 5.
Fig. 5.

Fabrication processes

Fig. 6.
Fig. 6.

Fabricated device: (a). overview, (b). knife edge plate

Fig. 7.
Fig. 7.

Frequency response of (a) amplitude, (b) phase

Fig. 8.
Fig. 8.

Setup of the reflective type spot profile measurement

Fig. 9.
Fig. 9.

Measured knife edge signals of the spots focused with a (a) 20X and (b) 40X objective

Fig. 10
Fig. 10

(a). Measured knife edge signal, (b) derived spot profiles

Tables (2)

Tables Icon

Table 1 Geometry and performance parameters of the knife edge scanner

Tables Icon

Table 2 Measured and diffraction limited focused spot size

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = k x P ( x ' ) dx ' ,
P ( x ) = 1 k dI ( x ) dx

Metrics