Abstract

Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10-5, the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2dB for quadrature-phase-shift keying (QPSK) and by 23.4dB for binary-phase-shift keying (BPSK).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [Crossref]
  2. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
    [Crossref]
  3. X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” J. Lightwave Technol. 51, 509–516 (2003).
  4. M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
    [Crossref]
  5. J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
    [Crossref]
  6. R. Van Nee and R. Prasad, OFDM Wireless Multimedia Communications, (Artech House, Boston2000).
  7. Y. Wu and B. Caron, “Digital television terrestrial broadcasting,” IEEE Commun. Mag. 32, 46–52 (1994).
    [Crossref]
  8. Q. Pan and R. J. Green, “Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise,” IEEE Photon. Technol. Lett. 8, 278–280 (1996).
    [Crossref]
  9. A. Kim, Y. Hun Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Commun. Electron. 50, 517–520 (2004).
    [Crossref]
  10. B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans Microwave Theory Tech. 49, 1404–1409 (2001).
    [Crossref]
  11. I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for Optical Communication Systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
    [Crossref]
  12. I. B. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical communication systems,” IEEE Photon. Technol. Lett. 17, 2224–2226 (2005).
    [Crossref]
  13. O. Milenkovic, I. B. Djordjevic, and B. Vasic, “Block-circulant low-density parity-check codes for optical communication systems,” J. Sel. Top. Quantum Electron. 10, 294–299 (2004).
    [Crossref]
  14. R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun. 49, 2164–2171 (2001).
    [Crossref]
  15. H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).
  16. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for highspeed optical transmission,” J. Lightwave Technol. 20, 417–427 (2002).
    [Crossref]
  17. J. G. ProakisDigital Communications(McGraw Hill, Boston2001).
  18. W. E. Ryan, “Concatenated convolutional codes and iterative decoding,” in Wiley Encyclopedia in Telecommunications, J. G. Proakis, ed., (John Wiley and Sons, 2003).
  19. C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).
  20. L. C. Andrews and R.L. Philips, Laser beam propagation through random media, (SPIE Optical Engineering Press, 1998).
  21. N. Levinson, “The Wiener RMS error criterion in filter design and prediction,” J. Math. Phys. 25, 261–278 (1947).
  22. J. Durbin, “Efficient estimation of parameters in moving-average models,” Biometrica 46, 306–316 (1959).
  23. Wood A.T.A. and Chan G., “Simulation of stationary Gaussian processes in [0,1]d,” J. Comp. Graph. Stat. 3, 409–432 (1994).
    [Crossref]

2005 (4)

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
[Crossref]

I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for Optical Communication Systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
[Crossref]

I. B. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical communication systems,” IEEE Photon. Technol. Lett. 17, 2224–2226 (2005).
[Crossref]

C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).

2004 (2)

O. Milenkovic, I. B. Djordjevic, and B. Vasic, “Block-circulant low-density parity-check codes for optical communication systems,” J. Sel. Top. Quantum Electron. 10, 294–299 (2004).
[Crossref]

A. Kim, Y. Hun Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Commun. Electron. 50, 517–520 (2004).
[Crossref]

2003 (2)

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” J. Lightwave Technol. 51, 509–516 (2003).

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

2002 (2)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for highspeed optical transmission,” J. Lightwave Technol. 20, 417–427 (2002).
[Crossref]

2001 (4)

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun. 49, 2164–2171 (2001).
[Crossref]

H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans Microwave Theory Tech. 49, 1404–1409 (2001).
[Crossref]

1996 (1)

Q. Pan and R. J. Green, “Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise,” IEEE Photon. Technol. Lett. 8, 278–280 (1996).
[Crossref]

1994 (2)

Y. Wu and B. Caron, “Digital television terrestrial broadcasting,” IEEE Commun. Mag. 32, 46–52 (1994).
[Crossref]

Wood A.T.A. and Chan G., “Simulation of stationary Gaussian processes in [0,1]d,” J. Comp. Graph. Stat. 3, 409–432 (1994).
[Crossref]

1959 (1)

J. Durbin, “Efficient estimation of parameters in moving-average models,” Biometrica 46, 306–316 (1959).

1947 (1)

N. Levinson, “The Wiener RMS error criterion in filter design and prediction,” J. Math. Phys. 25, 261–278 (1947).

A.T.A., Wood

Wood A.T.A. and Chan G., “Simulation of stationary Gaussian processes in [0,1]d,” J. Comp. Graph. Stat. 3, 409–432 (1994).
[Crossref]

Ahn, Y.-S.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Allen, C. T.

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

L. C. Andrews and R.L. Philips, Laser beam propagation through random media, (SPIE Optical Engineering Press, 1998).

Anguita, J. A.

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
[Crossref]

Arnold, D.-M.

H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).

Caron, B.

Y. Wu and B. Caron, “Digital television terrestrial broadcasting,” IEEE Commun. Mag. 32, 46–52 (1994).
[Crossref]

Chang, H.-Ch.

C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).

Cho, J.-W.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Cho, M.-Y.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Demarest, K. R.

Dholakia, A.

H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).

Dixon, B. J.

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans Microwave Theory Tech. 49, 1404–1409 (2001).
[Crossref]

Djordjevic, I. B.

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
[Crossref]

I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for Optical Communication Systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
[Crossref]

I. B. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical communication systems,” IEEE Photon. Technol. Lett. 17, 2224–2226 (2005).
[Crossref]

O. Milenkovic, I. B. Djordjevic, and B. Vasic, “Block-circulant low-density parity-check codes for optical communication systems,” J. Sel. Top. Quantum Electron. 10, 294–299 (2004).
[Crossref]

Durbin, J.

J. Durbin, “Efficient estimation of parameters in moving-average models,” Biometrica 46, 306–316 (1959).

Eleftheriou, E.

H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).

G., Chan

Wood A.T.A. and Chan G., “Simulation of stationary Gaussian processes in [0,1]d,” J. Comp. Graph. Stat. 3, 409–432 (1994).
[Crossref]

Green, R. J.

Q. Pan and R. J. Green, “Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise,” IEEE Photon. Technol. Lett. 8, 278–280 (1996).
[Crossref]

Huang, R.

Huh, S.-W.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Hui, R.

Hun Joo, Y.

A. Kim, Y. Hun Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Commun. Electron. 50, 517–520 (2004).
[Crossref]

Iezekiel, S.

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans Microwave Theory Tech. 49, 1404–1409 (2001).
[Crossref]

Jeong, M.-C.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Kahn, J. M.

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” J. Lightwave Technol. 51, 509–516 (2003).

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun. 49, 2164–2171 (2001).
[Crossref]

Kim, A.

A. Kim, Y. Hun Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Commun. Electron. 50, 517–520 (2004).
[Crossref]

Kim, S.-Y.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Kim, Y.

A. Kim, Y. Hun Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Commun. Electron. 50, 517–520 (2004).
[Crossref]

Lee, C.-Y.

C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).

Lee, J.-H.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Lee, J.-S.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Levinson, N.

N. Levinson, “The Wiener RMS error criterion in filter design and prediction,” J. Math. Phys. 25, 261–278 (1947).

Lin, C.-C.

C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).

Lin, K.-L.

C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).

Milenkovic, O.

I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for Optical Communication Systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
[Crossref]

O. Milenkovic, I. B. Djordjevic, and B. Vasic, “Block-circulant low-density parity-check codes for optical communication systems,” J. Sel. Top. Quantum Electron. 10, 294–299 (2004).
[Crossref]

Namgung, S.-W.

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

Neifeld, M. A.

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
[Crossref]

Pan, Q.

Q. Pan and R. J. Green, “Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise,” IEEE Photon. Technol. Lett. 8, 278–280 (1996).
[Crossref]

Philips, R.L.

L. C. Andrews and R.L. Philips, Laser beam propagation through random media, (SPIE Optical Engineering Press, 1998).

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Pollard, R. D.

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans Microwave Theory Tech. 49, 1404–1409 (2001).
[Crossref]

Prasad, R.

R. Van Nee and R. Prasad, OFDM Wireless Multimedia Communications, (Artech House, Boston2000).

Proakis, J. G.

J. G. ProakisDigital Communications(McGraw Hill, Boston2001).

Richards, D.

Van Nee, R.

R. Van Nee and R. Prasad, OFDM Wireless Multimedia Communications, (Artech House, Boston2000).

Vasic, B.

I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for Optical Communication Systems,” J. Lightwave Technol. 23, 1939–1946 (2005).
[Crossref]

I. B. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical communication systems,” IEEE Photon. Technol. Lett. 17, 2224–2226 (2005).
[Crossref]

O. Milenkovic, I. B. Djordjevic, and B. Vasic, “Block-circulant low-density parity-check codes for optical communication systems,” J. Sel. Top. Quantum Electron. 10, 294–299 (2004).
[Crossref]

Vasic, B. V.

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
[Crossref]

Wu, Y.

Y. Wu and B. Caron, “Digital television terrestrial broadcasting,” IEEE Commun. Mag. 32, 46–52 (1994).
[Crossref]

You, R.

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun. 49, 2164–2171 (2001).
[Crossref]

Yu, H. X.

H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).

Zhu, B.

Zhu, X.

X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels,” J. Lightwave Technol. 51, 509–516 (2003).

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

Biometrica (1)

J. Durbin, “Efficient estimation of parameters in moving-average models,” Biometrica 46, 306–316 (1959).

IEEE Commun. Mag. (1)

Y. Wu and B. Caron, “Digital television terrestrial broadcasting,” IEEE Commun. Mag. 32, 46–52 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Q. Pan and R. J. Green, “Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise,” IEEE Photon. Technol. Lett. 8, 278–280 (1996).
[Crossref]

M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8x10 Gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photon. Technol. Lett. 15, 171–173 (2003).
[Crossref]

I. B. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical communication systems,” IEEE Photon. Technol. Lett. 17, 2224–2226 (2005).
[Crossref]

IEEE Trans Microwave Theory Tech. (1)

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans Microwave Theory Tech. 49, 1404–1409 (2001).
[Crossref]

IEEE Trans. Commun. (2)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[Crossref]

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun. 49, 2164–2171 (2001).
[Crossref]

IEEE Trans. Commun. Electron. (1)

A. Kim, Y. Hun Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Commun. Electron. 50, 517–520 (2004).
[Crossref]

in Proc. ESSCIRC (1)

C.-C. Lin, K.-L. Lin, H.-Ch. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” in Proc. ESSCIRC 2005, 211–214 (2005).

in Proc. IEEE Globecom 2001 (1)

H. X. Yu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding of LDPC codes,” in Proc. IEEE Globecom 2001 2, 1036–1036E (2001).

J. Comp. Graph. Stat. (1)

Wood A.T.A. and Chan G., “Simulation of stationary Gaussian processes in [0,1]d,” J. Comp. Graph. Stat. 3, 409–432 (1994).
[Crossref]

J. Lightwave Technol. (3)

J. Math. Phys. (1)

N. Levinson, “The Wiener RMS error criterion in filter design and prediction,” J. Math. Phys. 25, 261–278 (1947).

J. Opt. Net. (1)

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Shannon capacities and error-correction codes for optical atmospheric trubulent channels,” J. Opt. Net. 4, 586–601 (2005).
[Crossref]

J. Sel. Top. Quantum Electron. (1)

O. Milenkovic, I. B. Djordjevic, and B. Vasic, “Block-circulant low-density parity-check codes for optical communication systems,” J. Sel. Top. Quantum Electron. 10, 294–299 (2004).
[Crossref]

Opt. Eng. (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Other (4)

R. Van Nee and R. Prasad, OFDM Wireless Multimedia Communications, (Artech House, Boston2000).

L. C. Andrews and R.L. Philips, Laser beam propagation through random media, (SPIE Optical Engineering Press, 1998).

J. G. ProakisDigital Communications(McGraw Hill, Boston2001).

W. E. Ryan, “Concatenated convolutional codes and iterative decoding,” in Wiley Encyclopedia in Telecommunications, J. G. Proakis, ed., (John Wiley and Sons, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

FSO-OFDM system: (a) transmitter configuration, (b) receiver configuration, (c) FSO link, (d) OFDM symbol cyclic extension, (e) OFDM symbol after windowing. LDPCE-LDPC encoder, LPDCD-LDPC decoder, DFB-distributed-feedback laser, MZM-Mach-Zehnder modulator, S/P-serial-to-parallel, P/S-parllel-to-serial.

Fig. 2.
Fig. 2.

Waveforms and power spectral densities of the SSB OFDM signal with 64 sub-carriers at different points during transmission of an OFDM signal in a back-to-back configuration: (a) MZM RF input for B-OFDM, (b) MZM RF input for C-OFDM, (c) MZM RF input for U-OFDM, (d) PSD after MZM (U-OFDM), (e) photodectector (PD) output PSD (U-OFDM), (f) receiver constellation diagram for 16-QAM (U-OFDM), (g) PSD of SCM signal with four OFDM channels (U-OFDM). The PSD of double-side band OFDM signal after MZM is shown in Fig. 2 (h) (U-OFDM).

Fig. 3.
Fig. 3.

Received constellation diagrams of QPSK (a)-(c) and 16-QAM (d) SSB FSO-OFDM systems with electrical SNR per bit of 18 dB under the weak turbulence (σR=0.6) for: (a),(d) U-OFDM scheme, (b) C-OFDM scheme, and (c) B-OFDM scheme.

Fig. 4.
Fig. 4.

BER performance of LDPC-coded SSB U-OFDM system with 64-subcarriers under: (a) the weak turbulence (σR=0.6), and (b) strong turbulence (σR=3.0).

Fig. 5.
Fig. 5.

Comparison of different LDPC coded SSB FSO-OFDM systems with 64-subcarriers under the weak turbulence (σR=0.6).

Fig. 6.
Fig. 6.

BER performance of LDPC-coded OFDM in the presence of temporal correlation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = s OFDM ( t ) + b ,
s OFDM ( t ) = Re { k = w ( t kT ) i = N FFT 2 N FFT 2 1 X i , k e j 2 π i T FFT ( t kT ) e j 2 π f RF t }
kT T G 2 T win t kT + T FFT + T G 2 + T win .
i ( t ) = R a ( t ) s OFDM ( t ) + a ( t ) b 2 = R [ a ( t ) s OFDM ( t ) 2 + a ( t ) b 2 + 2 R e { a ( t ) s OFDM ( t ) a * ( t ) b } ] ,
r ( t ) = [ i ( t ) k RF cos ( ω RF t ) ] * h e ( τ ) + n ( t ) ,
σ R 2 = 1.23 C n 2 k 7 6 L 11 6 ,
f ( I ) = 2 ( αβ ) ( α + β ) 2 Γ ( α ) Γ ( β ) I ( α + β ) 2 1 K α β ( 2 αβI ) , I > 0 ,
α = ( exp [ 0.49 σ R 2 ( 1 + 1.11 σ R 12 5 ) 7 6 ] 1 ) 1 , β = ( exp [ 0.51 σ R 2 ( 1 + 0.69 σ R 12 5 ) 5 6 ] 1 ) 1 ,
H = [ P i 1 P i 2 P i 3 P i l P i l P i 1 P i 2 P i l 1 P i l r + 2 P i l r + 3 P i l r + 4 P i l r + 1 ] , P = [ 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 ] ,
L = { i : i p 2 1 , θ i + θ GF ( p ) }
λ ( s = ( s I , s Q ) ) = ( r I s I ) 2 2 σ 2 ( r Q s Q ) 2 2 σ 2 ,
E b N O = E { s i , k } log 2 M P O σ 2 .
L ( s j ) = log s : s j = 1 exp [ λ ( s ) ] s : s j = 0 exp [ λ ( s ) ] .
b X ( d ij ) = B X ( P i , P j ) B X ( P i , P i ) ,
B X ( P i , P j ) = E [ X ( P i ) X ( P j ) ] E [ X ( P i ) ] E [ X ( P j ) ] ,
f I ( I 1 , I 2 , , I n ) = 1 2 π i = 1 n I i ( 2 π ) n 2 C X 1 2 exp [ 1 8 ( ln I 1 I 0 ln I n I 0 ) ]
C X = [ σ X 2 σ X 2 b X ( T τ 0 d 0 ) σ X 2 b X ( ( n 1 ) T τ 0 d 0 ) σ X 2 b X ( T τ 0 d 0 ) σ X 2 σ X 2 b X ( ( n 2 ) T τ 0 d 0 ) σ X 2 b X ( ( n 1 ) T τ 0 d 0 ) σ X 2 b X ( ( n 2 ) T τ 0 d 0 ) σ X 2 ]
σ X 2 0.56 k 7 6 0 L C n 2 ( x ) ( L x ) 5 6 dx ,
b X ( τ ) = exp ( ( τ τ 0 ) 5 3 ) .

Metrics