Abstract

We demonstrate a miniature microfabricated saturated absorption laser spectrometer. The system consists of miniature optics, a microfabricated Rb vapor cell, heaters, and a photodetector, all contained within a volume of 0.1 cm3. Saturated absorption spectra were measured with a diode laser at 795 nm. They are comparable to signals obtained with standard table-top setups, although the rubidium vapor cell has an interior volume of only 1 mm3. We discuss the performance and prospects for using such systems as a miniature optical wavelength reference, compatible with transportable instruments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, in Laser Spectroscopy (Springer, Berlin, 1996).
  2. T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971).
    [CrossRef]
  3. K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
    [CrossRef]
  4. V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed., (Springer-Verlag, New York, 1976).
  5. C. Wieman and T. W. Hänsch, "Doppler-free laser polarization spectroscopy," Phys. Rev. Lett. 36, 1170-1173 (1976).
    [CrossRef]
  6. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  7. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).
  8. R. W. Wood, "The selective reflection of monochromatic light by mercury vapor," Philos. Mag. 18, 187 (1909).
  9. J. L. Cojan, "Study of the selective reflection of mercury resonance radiation by mercury vapor," Ann. Phys. (France) 9, 385-440 (1954).
  10. J. P. Woerdman and M. F. H. Schuurmans, "Spectral narrowing of selective reflection from sodium vapour," Opt. Commun. 14, 248-251 (1975).
    [CrossRef]
  11. A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
    [CrossRef]
  12. O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
    [CrossRef]
  13. G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).
  14. H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).
  15. J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
    [CrossRef]
  16. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
    [CrossRef]
  17. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
    [CrossRef]
  18. L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
    [CrossRef]
  19. S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (Tampa, 2003).
  20. A. Onae, K. Okumura, J. Yoda, and K. Nakagawa, "Saturation spectroscopy of acetylene molecule towards frequency standard at 1550 nm region," in CPEM Digest (Conference on Precision Electromagnetic Measurements, 1996).
  21. F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
    [CrossRef]
  22. S. Peil, S. Crane, and C. Ekstrom, "High-efficiency frequency doubling for the production of 780 nm light," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (Tampa, 2003).
  23. A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006).
    [CrossRef]
  24. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
    [CrossRef] [PubMed]
  25. G. Wallis and D. Pomerantz, "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946-3949 (1969).
    [CrossRef]
  26. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
    [CrossRef]
  27. W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).
  28. S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
    [CrossRef]
  29. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, "The MAC - A Miniature Atomic Clock," in Proceedings of the IEEE International Frequency Control Symposium and the Precise Time and Time Interval (PTTI) Systems and Applications Meeting (Vancouver, Canada, 2005).
  30. A. Brannon, M. Janković, J. Breitbarth, Z. Popović, V. Gerginov, V. Shah, S. Knappe, L. Hollberg, and J. Kitching, "A local Oscillator for Chip-Scale Atomic Clocks at NIST," in Proceedings of the IEEE Frequency Control Symposium (Miami, FL, 2006).

2006

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006).
[CrossRef]

2005

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

2004

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).

2002

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

1998

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998).
[CrossRef]

1994

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

1993

F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

1992

K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

1976

C. Wieman and T. W. Hänsch, "Doppler-free laser polarization spectroscopy," Phys. Rev. Lett. 36, 1170-1173 (1976).
[CrossRef]

1975

J. P. Woerdman and M. F. H. Schuurmans, "Spectral narrowing of selective reflection from sodium vapour," Opt. Commun. 14, 248-251 (1975).
[CrossRef]

1974

G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).

1971

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971).
[CrossRef]

1969

G. Wallis and D. Pomerantz, "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946-3949 (1969).
[CrossRef]

1964

W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).

1954

J. L. Cojan, "Study of the selective reflection of mercury resonance radiation by mercury vapor," Ann. Phys. (France) 9, 385-440 (1954).

1909

R. W. Wood, "The selective reflection of monochromatic light by mercury vapor," Philos. Mag. 18, 187 (1909).

Badalyan, A.

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

Chaltykyan, V.

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

Cojan, J. L.

J. L. Cojan, "Study of the selective reflection of mercury resonance radiation by mercury vapor," Ann. Phys. (France) 9, 385-440 (1954).

Corwin, K. L.

Deninger, A.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Epstein, R. J.

Felder, R.

F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

Fortagh, J.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).

Gerginov, V.

Grigoryan, G.

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

Hand, C. F.

Hänsch, T. W.

C. Wieman and T. W. Hänsch, "Doppler-free laser polarization spectroscopy," Phys. Rev. Lett. 36, 1170-1173 (1976).
[CrossRef]

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971).
[CrossRef]

Harvey, K. C.

G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).

Hollberg, H.

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

Hollberg, L.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

Im, K. B.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Jung, H. Y.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Kim, P. S.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Kitching, J.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

Knaak, K. M.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

Knappe, S.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

Kraft, S.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Lamb, W. E.

W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).

Lee, H. S.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Levenson, M. D.

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971).
[CrossRef]

Liew, L. A.

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

Liew, L.A.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

Lison, F.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Lu, Z. T.

Macadam, K. B.

K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Meisel, G.

G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).

Meschede, D.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

Millerioux, Y.

F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

Moreland, J.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

Movsessian, M.

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

Nez, F.

F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

Oh, C. H.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Papoyan, A.

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006).
[CrossRef]

Pomerantz, D.

G. Wallis and D. Pomerantz, "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946-3949 (1969).
[CrossRef]

Robinson, H. G.

Sargsyan, A.

A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006).
[CrossRef]

Sarkisyan, D.

A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006).
[CrossRef]

Schawlow, A. L.

G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971).
[CrossRef]

Schmidt, O.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

Schuurmans, M. F. H.

J. P. Woerdman and M. F. H. Schuurmans, "Spectral narrowing of selective reflection from sodium vapour," Opt. Commun. 14, 248-251 (1975).
[CrossRef]

Schwindt, P.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

Schwindt, P. D. D.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

Shah, V.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

Shmavonyan, S.

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

Song, S. H.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Steinbach, A.

K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Truck, C.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Wallis, G.

G. Wallis and D. Pomerantz, "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946-3949 (1969).
[CrossRef]

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).

Wieman, C.

K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

C. Wieman and T. W. Hänsch, "Doppler-free laser polarization spectroscopy," Phys. Rev. Lett. 36, 1170-1173 (1976).
[CrossRef]

Wieman, C. E.

Woerdman, J. P.

J. P. Woerdman and M. F. H. Schuurmans, "Spectral narrowing of selective reflection from sodium vapour," Opt. Commun. 14, 248-251 (1975).
[CrossRef]

Wood, R. W.

R. W. Wood, "The selective reflection of monochromatic light by mercury vapor," Philos. Mag. 18, 187 (1909).

Wynands, R.

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).

Zimmermann, C.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Am. J. Phys.

K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Ann. Phys. (France)

J. L. Cojan, "Study of the selective reflection of mercury resonance radiation by mercury vapor," Ann. Phys. (France) 9, 385-440 (1954).

Appl. Opt.

Appl. Phys. B

O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994).
[CrossRef]

Appl. Phys. B: Lasers and Optics

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).

Appl. Phys. Lett.

J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

Bull. Am. Phys. Soc.

G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).

Euro. Phys. J. D

A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
[CrossRef]

J. Appl. Phys.

G. Wallis and D. Pomerantz, "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946-3949 (1969).
[CrossRef]

J. Korean Phys. Soc.

H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).

Las. Phys. Lett.

S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
[CrossRef]

Opt. Commun.

F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

J. P. Woerdman and M. F. H. Schuurmans, "Spectral narrowing of selective reflection from sodium vapour," Opt. Commun. 14, 248-251 (1975).
[CrossRef]

Opt. Express

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
[CrossRef]

Opt. Lett.

Philos. Mag.

R. W. Wood, "The selective reflection of monochromatic light by mercury vapor," Philos. Mag. 18, 187 (1909).

Phys. Rev. A

A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006).
[CrossRef]

W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).

Phys. Rev. Lett.

C. Wieman and T. W. Hänsch, "Doppler-free laser polarization spectroscopy," Phys. Rev. Lett. 36, 1170-1173 (1976).
[CrossRef]

T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971).
[CrossRef]

Other

W. Demtröder, in Laser Spectroscopy (Springer, Berlin, 1996).

S. Peil, S. Crane, and C. Ekstrom, "High-efficiency frequency doubling for the production of 780 nm light," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (Tampa, 2003).

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (Tampa, 2003).

A. Onae, K. Okumura, J. Yoda, and K. Nakagawa, "Saturation spectroscopy of acetylene molecule towards frequency standard at 1550 nm region," in CPEM Digest (Conference on Precision Electromagnetic Measurements, 1996).

V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed., (Springer-Verlag, New York, 1976).

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, "The MAC - A Miniature Atomic Clock," in Proceedings of the IEEE International Frequency Control Symposium and the Precise Time and Time Interval (PTTI) Systems and Applications Meeting (Vancouver, Canada, 2005).

A. Brannon, M. Janković, J. Breitbarth, Z. Popović, V. Gerginov, V. Shah, S. Knappe, L. Hollberg, and J. Kitching, "A local Oscillator for Chip-Scale Atomic Clocks at NIST," in Proceedings of the IEEE Frequency Control Symposium (Miami, FL, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a). Photograph of the microfabricated saturated absorption spectrometer. (b) Schematic of the microfabricated setup, which consists of a vapor cell with two heaters, two polarizing beam splitters, two polarizers, two prisms, two quarter waveplates, and a photodetector. The laser and control electronics are not shown in the photo, but could be close to the tiny spectrometer or elsewhere.

Fig. 2.
Fig. 2.

(a). Spectrum of the transitions 5S1/2, F = 2 → 5P1/2, F’ = 1 and 2 isotopically enriched 87Rb measured with the microfabricated saturation spectrometer. (b) Saturated absorption spectrum of all D1-line transitions in natural rubidium, measured in a microfabricated vapor cell. (c) Relevant energy level structure of 87Rb. (d) Relevant energy level structure of 85Rb.

Fig. 3.
Fig. 3.

Full width at half maximum (FWHM) of the saturation dips measured as a function of pump laser intensity (black squares). The probe laser intensity was held constant at 2.6 mW/cm2. The error bars were deduced from a Lorentzian fit to the resonance lineshape. The solid line is a fit to the measured data.

Metrics