Abstract

Swept source optical coherence microscopy (OCM) enables cellular resolution en face imaging as well as integration with optical coherence tomography (OCT) cross sectional imaging. A buffered Fourier domain mode-locked (FDML) laser light source provides high speed, three dimensional imaging. Image resolutions of 1.6 μm × 8 μm (transverse × axial) with a 220 μm × 220 μm field of view and sensitivity higher than 98 dB are achieved. Three dimensional cellular imaging is demonstrated in vivo in the Xenopus laevis tadpole and ex vivo in the rat kidney and human colon.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical Coherence Microscopy in Scattering Media," Opt. Lett. 19, 590 (1994).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with Optical Coherence Microscopy," Dermatology 191, 93 (1995).
    [CrossRef] [PubMed]
  4. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064 (2003).
    [CrossRef] [PubMed]
  5. A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
    [CrossRef] [PubMed]
  6. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114 (2000).
    [CrossRef]
  7. V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Real-time, high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34 (2002).
    [CrossRef]
  8. T. Q. Xie, Z. G. Wang, and Y. T. Pan, "High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation," Opt. Express 11, 3210 (2003).
    [CrossRef] [PubMed]
  9. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
    [CrossRef] [PubMed]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003).
    [CrossRef] [PubMed]
  11. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183 (2003).
    [CrossRef] [PubMed]
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003).
    [CrossRef] [PubMed]
  13. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162 (2005).
    [CrossRef] [PubMed]
  14. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. E. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131 (2005).
    [CrossRef] [PubMed]
  15. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079 (2006).
    [CrossRef] [PubMed]
  16. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981 (2003).
    [CrossRef] [PubMed]
  17. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953 (2003).
    [CrossRef] [PubMed]
  18. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523 (2005).
    [CrossRef] [PubMed]
  19. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225 (2006).
    [CrossRef] [PubMed]
  20. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975 (2006).
    [CrossRef] [PubMed]
  21. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404 (2004).
    [CrossRef] [PubMed]
  22. M. Gu, C. J. R. Sheppard, and X. Gan, "Image-Formation in a Fiberoptic Confocal Scanning Microscope," J. Opt. Soc. Am. A 8, 1755 (1991).
    [CrossRef]
  23. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissues in vivo," Appl. Opt. 38, 2105 (1999).
    [CrossRef]
  24. D. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
    [CrossRef] [PubMed]

2007

2006

2005

2004

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404 (2004).
[CrossRef] [PubMed]

2003

2002

2000

1999

1995

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with Optical Coherence Microscopy," Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

1994

1991

Adler, D.

Adler, D. C.

Aguirre, A. D.

Akkin, T.

Alizadeh-Naderi, R.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

Anderson, R. R.

Bonner, R. F.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with Optical Coherence Microscopy," Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Boppart, S. A.

Boudoux, C.

Bouma, B. E.

Cable, A. E.

Cense, B.

Chen, Z. P.

Choma, M. A.

Clark, A. L.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

Creazzo, T. L.

de Boer, J. E.

de Boer, J. F.

Duker, J. S.

Ellerbee, A. K.

El-Naggar, A. K.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

Fercher, A. F.

Fujimoto, J. G.

D. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404 (2004).
[CrossRef] [PubMed]

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064 (2003).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical Coherence Microscopy in Scattering Media," Opt. Lett. 19, 590 (1994).
[CrossRef] [PubMed]

Gan, X.

Gillenwater, A.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

Goetzinger, E.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
[CrossRef] [PubMed]

Gu, M.

Hartl, I.

Hee, M. R.

Hitzenberger, C. K.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003).
[CrossRef] [PubMed]

Hsiung, P.

Huber, R.

Iftimia, N.

Izatt, J. A.

Jiang, J. Y.

Joo, C.

Ko, T. H.

Kowalczyk, A.

Leitgeb, R.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003).
[CrossRef] [PubMed]

Luo, W.

Nelson, J. S.

Owen, G. M.

Pan, Y. T.

Park, B. H.

Pierce, M. C.

Pircher, M.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
[CrossRef] [PubMed]

Rajadhyaksha, M.

Ralston, T. S.

Richards-Kortum, R.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

Rollins, A. M.

Sarunic, M. V.

Saxer, C.

Schmitt, J. M.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with Optical Coherence Microscopy," Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Srinivasan, V. J.

Swanson, E. A.

Tan, W.

Tearney, G. J.

Vinegoni, C.

Wang, Z. G.

Webb, R. H.

Westphal, V.

Wojtkowski, M.

Xiang, S. H.

Xie, T. Q.

Xu, C. Y.

Yadlowsky, M. J.

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with Optical Coherence Microscopy," Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

Yang, C. H.

Yazdanfar, S.

Yun, S. H.

Zhao, Y. H.

Appl. Opt.

Dermatology

J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with Optical Coherence Microscopy," Dermatology 191, 93 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," J. Biomed. Opt. 9, 1271 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. E. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131 (2005).
[CrossRef] [PubMed]

C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079 (2006).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981 (2003).
[CrossRef] [PubMed]

Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114 (2000).
[CrossRef]

V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Real-time, high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34 (2002).
[CrossRef]

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064 (2003).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical Coherence Microscopy in Scattering Media," Opt. Lett. 19, 590 (1994).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003).
[CrossRef] [PubMed]

D. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257 (2004)
[CrossRef] [PubMed]

Other

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the swept source OCM system. L1-L4, lenses; M1, mirror; OB, water-immersion objective; D1-D2, dual-balanced photodetectors; FW, neutral density filter wheel; DC, dispersion compensating glass.

Fig. 2.
Fig. 2.

System characterization. A. The confocal gate (solid line) and the coherence gate (dashed line) are measured to be ∼20 μm and ∼8 μm, respectively. B. Transverse resolution is estimated to be ∼1.6 μm and the smallest elements on the USAF resolution chart can be resolved. C. Measured sensitivity is higher than 98 dB and dynamic range is higher than 50 dB.

Fig. 3.
Fig. 3.

Extraction of en face images from the 3D dataset. A. A volumetric image acquired by the swept source OCM system in ∼1.5 second. A series of en face images can then be extracted from the volume digitally. The volume size is ∼220 μm × 220 μm × 220 μm. B, C, and D. Three representative en face images ∼12 μm apart in depth from each other are extracted from the volume around the focus.

Fig. 4.
Fig. 4.

In vivo cellular images of a Xenopus laevis tadpole. A, C. OCM images at ∼200 μm and ∼400 μm below the surface, respectively. B, D. Confocal-like images generated by summing the 3D datasets in the axial direction. Obscuration of detailed cellular structures and loss of contrast in the confocal-like images are evident. Scale bar: 50 μm.

Fig. 5.
Fig. 5.

Cellular images of a fixed rat kidney. A, B. OCM images at ∼40 μm and ∼120 μm below the surface, respectively. C. Representative histology stained with H&E. The cell lining along the kidney tubules and nuclei can be observed. Scale bar: 50 μm.

Fig. 6.
Fig. 6.

Cellular images of an unfixed human colonic mucosa. A. OCM image of a single crypt structure at ∼ 100 μm below the surface. B. Representative histology stained with H&E. C, D. OCM images of a different region at ∼100 μm and ∼150 μm below the surface, respectively. Features like round crypts, goblect cells, epithelium lining the lumen, lymphoid cells in the lamina propria, and lumen shrinkage over depth can be resolved. Scale bar: 50 μm.

Metrics