Abstract

For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Knight, T. Birks, P. St. J. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547 - 1549 (1996).
    [CrossRef] [PubMed]
  2. T. Birks, J. Knight, and P. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961 - 963 (1997).
    [CrossRef] [PubMed]
  3. R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
    [CrossRef] [PubMed]
  4. J. Broeng, "Photonic Crystal Fibers: A new class of Optical Waveguides," Opt. Fiber Technol. 5, 305 - 330 (1999).
    [CrossRef]
  5. V. V. Ravi Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520 - 1525 (2002).
    [PubMed]
  6. K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
    [CrossRef]
  7. X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
    [CrossRef]
  8. M. van Eijkelenborg, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319 - 327 (2001).
    [CrossRef] [PubMed]
  9. A. Argyros, I. Bassett, M. van Eijkelenborg, M. Large, J. Zagari, N. Nicorovici, R. McPhedran, and C. Martijn de Sterke, "Ring structures in microstructured polymer optical fibres," Opt. Express 9, 813 - 820 (2001).
    [CrossRef] [PubMed]
  10. T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
    [CrossRef]
  11. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
    [CrossRef] [PubMed]
  12. S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
    [CrossRef] [PubMed]

2005 (1)

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

2002 (3)

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

V. V. Ravi Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520 - 1525 (2002).
[PubMed]

2001 (2)

2000 (2)

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

1999 (2)

R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
[CrossRef] [PubMed]

J. Broeng, "Photonic Crystal Fibers: A new class of Optical Waveguides," Opt. Fiber Technol. 5, 305 - 330 (1999).
[CrossRef]

1997 (1)

1996 (1)

Allan, D.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
[CrossRef] [PubMed]

Argyros, A.

Atkin, D.

Bassett, I.

Birks, T.

Broderick, N.

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

Broeng, J.

J. Broeng, "Photonic Crystal Fibers: A new class of Optical Waveguides," Opt. Fiber Technol. 5, 305 - 330 (1999).
[CrossRef]

Cregan, R.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Feng, X.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

Finazzi, V.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

Fink, Y.

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Fleming, S.

Frampton, K.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

George, A.

Hart, S.

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

Hewak, D.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Issa, N.

Joannopoulos, J. D.

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Kiang, K.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

Knight, J.

Large, M.

Mangan, B.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
[CrossRef] [PubMed]

Manos, S.

Martijn de Sterke, C.

Maskaly, G.

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

McPhedran, R.

Monro, T.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

Moore, R.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

Nicorovici, N.

Nicorovici, N. A. P.

Omenetto, F.

Petropoulos, P.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

Prideaux, P.

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

Ravi Kumar, V. V.

Reeves, W.

Richardson, D.

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

Roberts, P.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
[CrossRef] [PubMed]

Russell, P.

Russell, P. St. J.

Rutt, H.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

Taylor, A.

Temelkuran, B.

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Tucknott, J.

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

van Eijkelenborg, M.

West, Y.

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

Zagari, J.

Electron. Lett. (3)

K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546 - 547 (2002).
[CrossRef]

X. Feng, T. Monro, V. Finazzi, R. Moore, K. Frampton, P. Petropoulos, and D. Richardson, "Extruded singlemode, high-nonlinearity, tellurite glass holey fibre," Electron. Lett. 41, 835 - 837, (2005).
[CrossRef]

T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998 - 2000 (2000).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Broeng, "Photonic Crystal Fibers: A new class of Optical Waveguides," Opt. Fiber Technol. 5, 305 - 330 (1999).
[CrossRef]

Opt. Lett. (2)

Science (3)

R. Cregan, B. Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537 - 1539 (1999).
[CrossRef] [PubMed]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An All-Dielectric Coaxial Waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

S. Hart, G. Maskaly, B. Temelkuran, P. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510 - 513 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic representation of the process for fabricating fibers using bicomponent melt extrusion.

Fig. 2.
Fig. 2.

SEM micrograph of a PET/EvOH extruded fiber with 127 islands and the islands dissolved out.

Fig. 3.
Fig. 3.

TEM micrograph of a microstructured fiber fabricated by the direct bicomponent extrusion of PP and PET (top). Optical micrographs of this coaxial fiber: unstrained showing a green reflectivity (second from top), strained to 40% of its original length showing a blue-green reflection (second from bottom) and strained to about 120% of its original length now exhibiting a red reflectivity (bottom). Fiber pictures are of equivalent scale showing the decrease in lateral dimension associated with the extension along the length. See text for explanation of the seeming red-shift with continued positive strain.

Fig. 4.
Fig. 4.

Reflectivity spectra of the coaxial fiber measured under strain-free and 120% strain conditions.

Fig. 5.
Fig. 5.

Coaxially symmetric fiber with approximately 60 alternating layers.

Metrics