Abstract

Retinal, choroidal and scleral imaging by using swept-source optical coherence tomography (SS-OCT) with a 1-μm band probe light, and high-contrast and three-dimensional (3D) imaging of the choroidal vasculature are presented. This SS-OCT has a measurement speed of 28,000 A-lines/s, a depth resolution of 10.4 μm in tissue, and a sensitivity of 99.3 dB. Owing to the high penetration of the 1-μm probe light and the high sensitivity of the system, the in vivo sclera of a healthy volunteer can be observed. A software-based algorithm of scattering optical coherence angiography (S-OCA) is developed for the high-contrast and 3D imaging of the choroidal vessels. The S-OCA is used to visualize the 3D choroidal vasculature of the in vivo human macula and the optic nerve head. Comparisons of S-OCA with several other angiography techniques including Doppler OCA, Doppler OCT, fluorescein angiography, and indocyanine green angiography are also presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  2. G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998).
    [CrossRef]
  3. D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  4. J. Welzel, "Optical coherence tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
    [CrossRef] [PubMed]
  5. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
    [CrossRef]
  6. G. J. Tearney, I.-K. Jang, and B. E. Bouma, "Optical coherence tomography for imaging the vulnerable plaque," J. Biomed. Opt. 11, 021,002 (2006).
    [CrossRef]
  7. T. Xie, M. Zeidel, and Y. Pan, "Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes," Opt. Express 10, 1431-1443 (2002.
  8. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, "Dental OCT," Opt. Express 3, 230-238 (1998).
    [CrossRef]
  9. V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
    [CrossRef]
  10. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Incorporated, 2004).
  11. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  12. T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
    [CrossRef] [PubMed]
  13. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Vis. Sci. 46.
    [PubMed]
  14. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
    [CrossRef] [PubMed]
  15. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, "High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 113, 2054.e1-2054.14 (2006).
    [CrossRef]
  16. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
    [CrossRef]
  17. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
    [CrossRef]
  18. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
    [CrossRef]
  19. V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, "High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007).
    [CrossRef] [PubMed]
  20. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).
  21. T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).
  22. J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed. (Mosby, 1997).
  23. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
    [PubMed]
  24. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
    [PubMed]
  25. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
    [CrossRef] [PubMed]
  26. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
    [PubMed]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003),
    [CrossRef]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef]
  29. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
    [CrossRef]
  30. S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
    [PubMed]
  31. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
    [CrossRef]
  32. M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).
  33. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
    [CrossRef] [PubMed]
  34. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  35. Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
    [CrossRef]
  36. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm — enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
    [CrossRef]
  37. T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
    [CrossRef]
  38. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef]
  39. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  40. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef]
  41. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745 (2003).
    [CrossRef] [PubMed]
  42. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef]
  43. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
    [CrossRef]
  44. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
    [CrossRef]
  45. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
    [CrossRef] [PubMed]
  46. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef]
  47. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  48. J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).
  49. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
    [CrossRef]
  50. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef]
  51. J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical doppler tomography," Opt. Express 13, 7449-7457 (2005).
    [CrossRef]
  52. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
    [CrossRef] [PubMed]
  53. A. N. S. institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards Institute, New York, 2000).
  54. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  55. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002).
    [CrossRef]
  56. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
    [CrossRef]
  57. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef]
  58. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef]
  59. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
    [CrossRef] [PubMed]
  60. A. Sakamoto, "Improvement of image quality by composition method," Tech. Rep., Kyoto University Hospital (2006).
  61. P. Maragos and R. W. Schafer, "Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153-1169 (1987).
    [CrossRef]
  62. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
    [CrossRef]
  63. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006).
    [CrossRef]
  64. H. H. Arsenault and G. April, "Properties of speckle integrated with a finite aperture and logarithmically transformed," J. Opt. Soc. Am. 66, 1160-1163 (1976).
    [CrossRef]
  65. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
    [CrossRef] [PubMed]
  66. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
    [CrossRef]
  67. A. Bill, "Blood circulation and fluid dynamics in the eye," Physiol. Rev. 55, 383-417 (1975).
    [PubMed]
  68. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
    [CrossRef]

2007

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, "High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007).
[CrossRef] [PubMed]

2006

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
[CrossRef]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
[CrossRef]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006).
[CrossRef]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
[CrossRef]

T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

2005

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm — enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef]

J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical doppler tomography," Opt. Express 13, 7449-7457 (2005).
[CrossRef]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef]

2004

2003

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef]

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003),
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

2002

2001

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

J. Welzel, "Optical coherence tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
[CrossRef] [PubMed]

1999

T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

1998

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, "Dental OCT," Opt. Express 3, 230-238 (1998).
[CrossRef]

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998).
[CrossRef]

1997

1995

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1994

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

1991

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1987

P. Maragos and R. W. Schafer, "Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153-1169 (1987).
[CrossRef]

1986

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

1976

1975

A. Bill, "Blood circulation and fluid dynamics in the eye," Physiol. Rev. 55, 383-417 (1975).
[PubMed]

1973

Adler, D. C.

Akiba, M.

Akkin, T.

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Applegate, B.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).

Applegate, B. E.

April, G.

Araki, T.

Arsenault, H. H.

Asrani, S.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).

Bajraszewski, T.

Bardenstein, D.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Bill, A.

A. Bill, "Blood circulation and fluid dynamics in the eye," Physiol. Rev. 55, 383-417 (1975).
[PubMed]

Bouma, B.

Bouma, B. E.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef]

Cable, A.

Cense, B.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Chan, K.

Chan, R.

Chang, W.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, T.

T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef]

Chen, T. C.

Chen, Y.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
[CrossRef]

Chen, Z.

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Choma, M. A.

Chong, C.

Chuck, R.

Colston, B.

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

DaSilva, L.

Dave, D.

de Boer, J.

de Boer, J. F.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
[CrossRef]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
[CrossRef]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002).
[CrossRef]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

Drexler, W.

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Everett, M.

Fercher, A. F.

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

Fujimoto, J.

Fujimoto, J. G.

Geitzenauer, W.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Gorczynska, I.

Gotoh, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Götzinger, E.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Gragoudas, E. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Guyer, D. R.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

Hale, G. M.

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Hangai, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998).
[CrossRef]

Hee, T. F. M. R.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hong, Y.

Hope-Ross, M.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Hori, Y.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef]

Hougaard, J. L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Hsu, K.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).

Huang, D.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, X.

Huber, R.

Iftimia, N.

Inoue, R.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Itoh, M.

Izatt, J.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Izatt, J. A.

Jiang, J.

Jiao, S.

Joo, C.

Jorgensen, T. M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kerbage, C.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
[CrossRef]

Kita, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Knighton, R.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Ko, T. H.

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Krupsky, S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Le, T.

Lee, E. C.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Lim, H.

Lin, W. G. S. C. P.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998).
[CrossRef]

Madjarova, V.

Madjarova, V. D.

Makita, S.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef]

Maragos, P.

P. Maragos and R. W. Schafer, "Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153-1169 (1987).
[CrossRef]

Matsumoto, M.

Michels, S.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Milner, T. E.

Mitsui, T.

T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

Morosawa, A.

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Mujat, M.

T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
[CrossRef]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Nanbu, T.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Nassif, N.

Nassif, N. A.

Nelson, J. S.

Nelson, Z. C. J.

Oh, W. Y.

Ojima, Y.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Orlock, D. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Otis, L.

Pan, Y.

Park, B.

T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef]

Park, B. H.

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
[CrossRef]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002).
[CrossRef]

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Povazay, B.

Puliafito, C.

Puliafito, C. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Querry, M. R.

Radhakrishnan, S.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Rao, B.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).

Reisen, P.

Reiser, B.

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

Rollins, A.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Rollins, A. M.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

Roth, J.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

Sakai, S.

Sakai, T.

Sander, B.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Sarunic, M.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).

Sarunic, M. V.

Sathyam, U.

Sattmann, H.

Schafer, R. W.

P. Maragos and R. W. Schafer, "Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153-1169 (1987).
[CrossRef]

Schmetterer, L.

Schmidt-Erfurth, U.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

Slakter, J. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

Sorenson, J. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

Srinivasan, V.

V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, "High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stingl, A.

Stroeve, P.

Sugawara, T.

Swanson, E. A.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tamura, M.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Targowski, P.

Tearney, G.

Tearney, G. J.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Thrane, L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

Tripathi, R.

Unterhuber, A.

Vakoc, B.

Voeffray, J.-B.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Wang, Q.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).

Wang, Y.

Welzel, J.

J. Welzel, "Optical coherence tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
[CrossRef] [PubMed]

Werner, J. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

Westphal, S. Y. V.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

White, B. R.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

Windeler, R.

Wojtkowski, M.

Xie, T.

Yamanari, M.

Yang, C.

Yannuzzi, L. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

Yasui, T.

Yasuno, Y.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef]

Yatagai, T.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006).
[CrossRef]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef]

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

Yelin, R.

Yoshimura, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Yun, S.

Yun, S. H.

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
[CrossRef]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef]

Yun, S.-H.

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

Zawadzki, R. J.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003),
[CrossRef]

Zeidel, M.

Zhang, J.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).

J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical doppler tomography," Opt. Express 13, 7449-7457 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).

Arch. Ophthalmol.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001).
[PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005).
[CrossRef] [PubMed]

Br. J. Ophthalmol.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

E-Abstract

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).

T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).

IEEE Trans. Acoust. Speech Signal Process.

P. Maragos and R. W. Schafer, "Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153-1169 (1987).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

Ophthalmology

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986).
[PubMed]

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994).
[PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006).
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007).
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006).
[CrossRef]

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, "Dental OCT," Opt. Express 3, 230-238 (1998).
[CrossRef]

T. Xie, M. Zeidel, and Y. Pan, "Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes," Opt. Express 10, 1431-1443 (2002.

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef]

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003),
[CrossRef]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm — enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005).
[CrossRef]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef]

J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical doppler tomography," Opt. Express 13, 7449-7457 (2005).
[CrossRef]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005).
[CrossRef]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
[CrossRef]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).
[CrossRef]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef]

Opt. Lett.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, "High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002).
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Physiol. Rev.

A. Bill, "Blood circulation and fluid dynamics in the eye," Physiol. Rev. 55, 383-417 (1975).
[PubMed]

Proc. SPIE

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006).
[CrossRef]

Science

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Skin Res. Technol.

J. Welzel, "Optical coherence tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001).
[CrossRef] [PubMed]

Other

G. J. Tearney, I.-K. Jang, and B. E. Bouma, "Optical coherence tomography for imaging the vulnerable plaque," J. Biomed. Opt. 11, 021,002 (2006).
[CrossRef]

B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).

J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed. (Mosby, 1997).

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Incorporated, 2004).

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, "High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 113, 2054.e1-2054.14 (2006).
[CrossRef]

A. Sakamoto, "Improvement of image quality by composition method," Tech. Rep., Kyoto University Hospital (2006).

A. N. S. institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards Institute, New York, 2000).

Supplementary Material (8)

» Media 1: AVI (10922 KB)     
» Media 2: AVI (2417 KB)     
» Media 3: AVI (1981 KB)     
» Media 4: AVI (4494 KB)     
» Media 5: AVI (2396 KB)     
» Media 6: AVI (2010 KB)     
» Media 7: AVI (5254 KB)     
» Media 8: AVI (2372 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram of 1-μm SS-OCT. LS denotes the light source; LD, laser diode for an aiming beam; C, circulator; M, mirror; PC, polarization controller; BPD, balanced photodetector; AMP, RF amplifier; and BP, RF band-pass filter.

Fig. 2.
Fig. 2.

Time dependence of the output power and wavelength of the light source.

Fig. 3.
Fig. 3.

(a) An example of information entropy, i.e., a cost function, of an OCT image, with respect to the change in the coefficients of the second-order phase for dispersion compensation. (b) Depth dependent sensitivity decay of SS-OCT. The horizontal axis is the relative depth from the zero delay point, and the vertical axis is the system sensitivity.

Fig. 4.
Fig. 4.

(a) In vivo human macula measured by SS-OCT and (b) the same image obtained using an MIP based despeckle filter.

Fig. 5.
Fig. 5.

(a) Fundus preview image of the optic nerve head created by squared spectral integration. (b) Standard OCT fundus image created from the same measurement.

Fig. 6.
Fig. 6.

OCT B-scan of in vivo human macula captured using (a) 1-μm OCT and (b) 830-nm SD-OCT.

Fig. 7.
Fig. 7.

In vivo human optic nerve head measured by using SS-OCT and PS-SD-OCT. (a) and (b) are the horizontal OCT B-mode images captured using 1-μm SS-OCT Click on the figures for a 2.4 MB movie (10.7 MB version is also available). [Media 1] [Media 2] (c) and (d) are the corresponding OCT images captured using 830-nm PS-SD-OCT, and (e) and (f) are the corresponding phase retardation images (1.9 MB movie). [Media 3] [Media 4] (g) is an OCT fundus.

Fig. 8.
Fig. 8.

Visualization of the sclera of in vivo human macula. (b) OCT B-scan images show the penetration to the sclera. (a) Positions of the B-scan images are indicated by red lines in the OCT fundus.

Fig. 9.
Fig. 9.

(a) 3D volume-rendered OCT images of in vivo human macula in which the OCT intensity signal is displayed in an inverted-gray color map and the choroidal vessels are displayed with an orange-red color map. Click on the figure for movies (short version is 2.3 MB and long version is 4.4 MB). [Media 5] (b) En face slices of the volumetric rendering at several different depths, where a semitransparent color map is applied to the OCT intensity volume. [Media 6] (c) A stereoview of the choroidal vessels of the macula.

Fig. 10.
Fig. 10.

(a) 3D reconstruction of the choroidal vessels of a human optic nerve head (orangered color map) overlaid by the intensity OCT (inverted gray color map). The volume is sectioned along the depth, where the sectioning plane is slightly slanted from the en face plane. Click on the figure for a movie (2.3 MB or 5.1 MB versions). [Media 8][Media 7] (b) 3D rendering of the choroidal vasculature and (c) its stereoview. (d) En face average projection of the choroidal vasculature.

Fig. 11.
Fig. 11.

Comparison between (a) S-OCA and (b) the corresponding intensity-inverted volume.

Tables (1)

Tables Icon

Table 1. Comparison between S-OCA and other angiography methods. D-OCT, Doppler OCT; CIP, choroidal intensity projection.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S j ( k ) 2 j = S e ( k ) 2 cos 2 ϕ j ( k ) j .
S e ( k ) = 2 N j N S j ( k ) 2 .
W ( k ) = S e ( k ) S e ( k ) 2 + n c Gauss ( k )
ε = x , z P ( x , z ) log P ( x , z )
I n < I z ' ( x , y ) < μ z ' 1 2 σ z '

Metrics