Abstract

Retinal, choroidal and scleral imaging by using swept-source optical coherence tomography (SS-OCT) with a 1-μm band probe light, and high-contrast and three-dimensional (3D) imaging of the choroidal vasculature are presented. This SS-OCT has a measurement speed of 28,000 A-lines/s, a depth resolution of 10.4 μm in tissue, and a sensitivity of 99.3 dB. Owing to the high penetration of the 1-μm probe light and the high sensitivity of the system, the in vivo sclera of a healthy volunteer can be observed. A software-based algorithm of scattering optical coherence angiography (S-OCA) is developed for the high-contrast and 3D imaging of the choroidal vessels. The S-OCA is used to visualize the 3D choroidal vasculature of the in vivo human macula and the optic nerve head. Comparisons of S-OCA with several other angiography techniques including Doppler OCA, Doppler OCT, fluorescein angiography, and indocyanine green angiography are also presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [Crossref]
  2. G. Häusler and M.W. Lindner, ““Coherence radar” and “spectral radar” —New tools for dermatological diagnosis,” J. Biomed. Opt. 3 (1998).
    [Crossref]
  3. D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  4. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [Crossref] [PubMed]
  5. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
    [Crossref]
  6. G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021,002 (2006).
    [Crossref]
  7. T. Xie, M. Zeidel, and Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Exp. 10, 1431–1443 (2002), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-24-1431.
  8. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
    [Crossref]
  9. V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
    [Crossref]
  10. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Incorporated, 2004).
  11. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
    [Crossref] [PubMed]
  12. T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
    [Crossref] [PubMed]
  13. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
    [PubMed]
  14. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
    [Crossref] [PubMed]
  15. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
    [Crossref]
  16. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
    [Crossref]
  17. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
    [Crossref]
  18. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
    [Crossref]
  19. V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, “High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
    [Crossref] [PubMed]
  20. B. Cense, “Optical coherence tomography for retinal imaging,” Ph.D. thesis, Twente University (2005).
  21. T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).
  22. J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed. (Mosby, 1997).
  23. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
    [PubMed]
  24. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
    [PubMed]
  25. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
    [Crossref] [PubMed]
  26. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003).
    [PubMed]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
    [Crossref]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
    [Crossref]
  29. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
    [Crossref]
  30. S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
    [PubMed]
  31. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
    [Crossref]
  32. M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).
  33. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
    [Crossref] [PubMed]
  34. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-?m wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  35. Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
    [Crossref]
  36. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
    [Crossref]
  37. T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys. 38, 6133–6137 (1999).
    [Crossref]
  38. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–894 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
    [Crossref]
  39. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [Crossref] [PubMed]
  40. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
    [Crossref]
  41. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745 (2003).
    [Crossref] [PubMed]
  42. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
    [Crossref]
  43. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
    [Crossref]
  44. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
    [Crossref]
  45. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
    [Crossref] [PubMed]
  46. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Exp. 14, 3225–3237 (2006), URL http://www.opticsinfobase.org/abstract.cfm?id=89307.
    [Crossref]
  47. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [Crossref] [PubMed]
  48. J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).
  49. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
    [Crossref]
  50. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
    [Crossref]
  51. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Exp. 13, 7449–7457 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449.
    [Crossref]
  52. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
    [Crossref] [PubMed]
  53. A. N. S. institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards institute, New York, 2000).
  54. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [Crossref] [PubMed]
  55. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
    [Crossref]
  56. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
    [Crossref]
  57. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
    [Crossref]
  58. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
    [Crossref]
  59. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
    [Crossref] [PubMed]
  60. A. Sakamoto, “Improvement of image quality by composition method,” Tech. rep., Kyoto University Hospital (2006).
  61. P. Maragos and R. W. Schafer, “Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1169 (1987).
    [Crossref]
  62. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
    [Crossref]
  63. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
    [Crossref]
  64. H. H. Arsenault and G. April, “Properties of speckle integrated with a finite aperture and logarithmically transformed,” J. Opt. Soc. Am. 66, 1160–1163 (1976).
    [Crossref]
  65. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
    [Crossref] [PubMed]
  66. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [Crossref]
  67. A. Bill, “Blood circulation and fluid dynamics in the eye,” Physiol. Rev. 55, 383–417 (1975).
    [PubMed]
  68. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
    [Crossref]

2007 (2)

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, “High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[Crossref] [PubMed]

2006 (18)

T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021,002 (2006).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Exp. 14, 3225–3237 (2006), URL http://www.opticsinfobase.org/abstract.cfm?id=89307.
[Crossref]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref] [PubMed]

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

A. Sakamoto, “Improvement of image quality by composition method,” Tech. rep., Kyoto University Hospital (2006).

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

2005 (10)

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Exp. 13, 7449–7457 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449.
[Crossref]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

2004 (5)

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

2003 (9)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–894 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
[Crossref]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745 (2003).
[Crossref] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003).
[PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

2002 (3)

T. Xie, M. Zeidel, and Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Exp. 10, 1431–1443 (2002), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-24-1431.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[Crossref]

2001 (2)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[Crossref] [PubMed]

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

1999 (2)

T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys. 38, 6133–6137 (1999).
[Crossref]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

1998 (2)

G. Häusler and M.W. Lindner, ““Coherence radar” and “spectral radar” —New tools for dermatological diagnosis,” J. Biomed. Opt. 3 (1998).
[Crossref]

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

1997 (1)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref] [PubMed]

1994 (1)

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1987 (1)

P. Maragos and R. W. Schafer, “Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1169 (1987).
[Crossref]

1986 (1)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

1976 (1)

1975 (1)

A. Bill, “Blood circulation and fluid dynamics in the eye,” Physiol. Rev. 55, 383–417 (1975).
[PubMed]

1973 (1)

Adler, D. C.

Ahlers, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Akiba, M.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Akkin, T.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

Applegate, B.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).

Applegate, B. E.

April, G.

Araki, T.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

Arsenault, H. H.

Asrani, S.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).

Bajraszewski, T.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745 (2003).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

Bardenstein, D.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

Bill, A.

A. Bill, “Blood circulation and fluid dynamics in the eye,” Physiol. Rev. 55, 383–417 (1975).
[PubMed]

Bouma, B.

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

Bouma, B. E.

G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021,002 (2006).
[Crossref]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[Crossref] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

Cable, A.

Carvalho, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

Cense, B.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

B. Cense, “Optical coherence tomography for retinal imaging,” Ph.D. thesis, Twente University (2005).

Chan, K.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Chan, R.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chavez-Pirson, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

Chen, T.

T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

Chen, T. C.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

Chen, Y.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

Chen, Z.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Exp. 13, 7449–7457 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449.
[Crossref]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
[Crossref] [PubMed]

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

Choma, M. A.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
[Crossref]

Chong, C.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Chuck, R.

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

Colston, B.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

DaSilva, L.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

Dave, D.

de Boer, J.

T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

de Boer, J. F.

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
[Crossref]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[Crossref]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

Drexler, W.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Duker, J. S.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Everett, M.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

Fercher, A. F.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–894 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Exp. 14, 3225–3237 (2006), URL http://www.opticsinfobase.org/abstract.cfm?id=89307.
[Crossref]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gass, J. D.

J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed. (Mosby, 1997).

Geitzenauer, W.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

Gorczynska, I.

Gotoh, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

Götzinger, E.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

Gragoudas, E. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Gregori, G.

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Guyer, D. R.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

Hale, G. M.

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref] [PubMed]

Hangai, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

Häusler, G.

G. Häusler and M.W. Lindner, ““Coherence radar” and “spectral radar” —New tools for dermatological diagnosis,” J. Biomed. Opt. 3 (1998).
[Crossref]

Hee, T. F. M. R.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Hitzenberger, C. K.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–894 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Hong, Y.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

Hope-Ross, M.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Hori, Y.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Hougaard, J. L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

Hsu, K.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

Huang, D.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huang, X.

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

Huber, R.

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

Inoue, R.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

institute, A. N. S.

A. N. S. institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards institute, New York, 2000).

Itoh, M.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Izatt, J.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

Izatt, J. A.

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
[Crossref]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003).
[PubMed]

Jang, I.-K.

G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021,002 (2006).
[Crossref]

Jiang, J.

Jiao, S.

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

Joo, C.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

Jorgensen, T. M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Kerbage, C.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

Kita, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

Knighton, R.

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

Ko, T. H.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

Kowalczyk, A.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745 (2003).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

Krupsky, S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

Le, T.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

Lee, E. C.

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

Leitgeb, R. A.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–894 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

Lim, H.

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

Lin, W. G. S. C. P.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lindner, M.W.

G. Häusler and M.W. Lindner, ““Coherence radar” and “spectral radar” —New tools for dermatological diagnosis,” J. Biomed. Opt. 3 (1998).
[Crossref]

Madjarova, V.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

Madjarova, V. D.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Makita, S.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Maragos, P.

P. Maragos and R. W. Schafer, “Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1169 (1987).
[Crossref]

Matsumoto, M.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

Michels, S.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Milner, T. E.

Mitsui, T.

T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys. 38, 6133–6137 (1999).
[Crossref]

Morosawa, A.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

Mujat, M.

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref] [PubMed]

Nanbu, T.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Nassif, N.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[Crossref]

Nassif, N. A.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

Nelson, J. S.

Nelson, Z. C. J.

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

Oh, W. Y.

Ojima, Y.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

Orlock, D. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Otis, L.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

Pan, Y.

T. Xie, M. Zeidel, and Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Exp. 10, 1431–1443 (2002), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-24-1431.

Park, B.

T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

Park, B. H.

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[Crossref]

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

Pierce, M. C.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

Pircher, M.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

Povazay, B.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Puliafito, C.

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

Puliafito, C. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Querry, M. R.

Radhakrishnan, S.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

Rao, B.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

Reisen, P.

Reiser, B.

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref] [PubMed]

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

Rollins, A.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

Rollins, A. M.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003).
[PubMed]

Roth, J.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

Sacu, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Sakai, S.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

Sakai, T.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Sakamoto, A.

A. Sakamoto, “Improvement of image quality by composition method,” Tech. rep., Kyoto University Hospital (2006).

Sander, B.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

Sarunic, M.

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).

Sarunic, M. V.

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
[Crossref]

Sathyam, U.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

Sattmann, H.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Schafer, R. W.

P. Maragos and R. W. Schafer, “Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1169 (1987).
[Crossref]

Schmetterer, L.

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

Schmidt-Erfurth, U.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Scholda, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

Schuman, J. S.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref] [PubMed]

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

Slakter, J. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

Sorenson, J. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Srinivasan, V.

V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, “High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

Stingl, A.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

Stroeve, P.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

Sugawara, T.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tamura, M.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Targowski, P.

Tearney, G.

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

Tearney, G. J.

G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021,002 (2006).
[Crossref]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[Crossref] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

Thrane, L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

Tripathi, R.

Unterhuber, A.

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

Vakoc, B.

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

Voeffray, J.-B.

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Wang, Q.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

Wang, Y.

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[Crossref] [PubMed]

Werner, J. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

Westphal, S. Y. V.

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

White, B. R.

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

White, B.R.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

Windeler, R.

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

Witkin, A. J.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

Wojtkowski, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Exp. 14, 3225–3237 (2006), URL http://www.opticsinfobase.org/abstract.cfm?id=89307.
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745 (2003).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

Xie, T.

T. Xie, M. Zeidel, and Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Exp. 10, 1431–1443 (2002), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-24-1431.

Yamanari, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

Yang, C.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
[Crossref]

Yannuzzi, L. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

Yasui, T.

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

Yasuno, Y.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Yatagai, T.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003).
[PubMed]

Yelin, R.

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

Yoshimura, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

Yun, S.

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

Yun, S. H.

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[Crossref] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

Yun, S.-H.

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

Zawadzki, R. J.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

Zeidel, M.

T. Xie, M. Zeidel, and Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Exp. 10, 1431–1443 (2002), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-24-1431.

Zhang, J.

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Exp. 13, 7449–7457 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449.
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 μm for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89, 073,901 (2006).

Arch. Ophthalmol. (3)

S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B.R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123, 1715–1720 (2005).
[Crossref] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003).
[PubMed]

Br. J. Ophthalmol. (1)

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2005).
[Crossref] [PubMed]

IEEE Trans. Acoust. Speech Signal Process. (1)

P. Maragos and R. W. Schafer, “Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1169 (1987).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (4)

T. Chen, M. Mujat, B. Park, and J. de Boer, “Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2695 (2006).

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[Crossref] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46.
[PubMed]

M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, “Quadrature Projection Full Range High Speed Fourier Domain Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci., E-Abstract  47, 2928 (2006).

J. Biomed. Opt. (4)

G. Häusler and M.W. Lindner, ““Coherence radar” and “spectral radar” —New tools for dermatological diagnosis,” J. Biomed. Opt. 3 (1998).
[Crossref]

G. J. Tearney, I.-K. Jang, and B. E. Bouma, “Optical coherence tomography for imaging the vulnerable plaque,” J. Biomed. Opt. 11, 021,002 (2006).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical Propaties fo Circulating Human Bloodin the Wavelength Range 400-2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

T. Mitsui, “Dynamic Range of Optical Reflectometry with Spectral Interferometry,” Jpn. J. Appl. Phys. 38, 6133–6137 (1999).
[Crossref]

Ophthalmology (6)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93, 611–617 (1986).
[PubMed]

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[Crossref] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006).
[Crossref]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography,” Ophthalmology 114, 763–773 (2007).
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Opt. Exp. (26)

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Exp. 14, 1862–1877 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862.
[Crossref]

T. Xie, M. Zeidel, and Y. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Exp. 10, 1431–1443 (2002), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-24-1431.

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Exp. 3, 230–238 (1998), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-230.
[Crossref]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Exp. 14, 5937–5944 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937.
[Crossref]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Exp. 14, 12,902-12,908 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12902.
[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Exp. 11, 3116–3121 (2003), URL http://www.opticsinfobase.org/abstract.cfm?id=78206.
[Crossref]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultrahigh- speed spectral domain optical coherence tomography,” Opt. Exp. 11, 3490–3497 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490.
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp. 14, 7821–7840 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821.
[Crossref]

Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Exp. 11, 1411–1417 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-12-1411.
[Crossref]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Exp. 13, 3252–3258 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
[Crossref]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Exp. 13, 10,652–10,664 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10652.
[Crossref]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–894 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[Crossref]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Exp. 11, 2953–2963 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953.
[Crossref]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2977–2998 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977.
[Crossref]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography, ” Opt. Exp. 11, 2183–2189 (2003), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183.
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Exp. 14, 3225–3237 (2006), URL http://www.opticsinfobase.org/abstract.cfm?id=89307.
[Crossref]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Exp. 14, 4403–4411 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
[Crossref]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-Resolved Optical Frequency Domain Imaging,” Opt. Exp. 13, 5483–5493 (2005), URL http://www.opticsinfobase.org/abstract.cfm?id=84914.
[Crossref]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Exp. 13, 7449–7457 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449.
[Crossref]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Exp. 13, 9480–9491 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9480.
[Crossref]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Exp. 13, 444–452 (2005), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444.
[Crossref]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method,” Opt. Exp. 14, 6502–6515 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[Crossref]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Exp. 12, 2156–2165 (2004),
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp. 12, 2404–2422 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404.
[Crossref]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Exp. 12, 2435–2447 (2004), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435.
[Crossref]

Opt. Lett. (8)

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
[Crossref] [PubMed]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002).
[Crossref]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745 (2003).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[Crossref] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006).
[Crossref] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref] [PubMed]

V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, “High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963–978 (1995).
[Crossref] [PubMed]

Physiol. Rev. (1)

A. Bill, “Blood circulation and fluid dynamics in the eye,” Physiol. Rev. 55, 383–417 (1975).
[PubMed]

Proc. SPIE (1)

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography,” Proc. SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X  6079, 60,790N (2006).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Skin Res. Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[Crossref] [PubMed]

Tech. rep. (1)

A. Sakamoto, “Improvement of image quality by composition method,” Tech. rep., Kyoto University Hospital (2006).

Other (4)

A. N. S. institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards institute, New York, 2000).

J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed. (Mosby, 1997).

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Incorporated, 2004).

B. Cense, “Optical coherence tomography for retinal imaging,” Ph.D. thesis, Twente University (2005).

Supplementary Material (8)

» Media 1: AVI (10922 KB)     
» Media 2: AVI (2417 KB)     
» Media 3: AVI (1981 KB)     
» Media 4: AVI (4494 KB)     
» Media 5: AVI (2396 KB)     
» Media 6: AVI (2010 KB)     
» Media 7: AVI (5254 KB)     
» Media 8: AVI (2372 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram of 1-μm SS-OCT. LS denotes the light source; LD, laser diode for an aiming beam; C, circulator; M, mirror; PC, polarization controller; BPD, balanced photodetector; AMP, RF amplifier; and BP, RF band-pass filter.

Fig. 2.
Fig. 2.

Time dependence of the output power and wavelength of the light source.

Fig. 3.
Fig. 3.

(a) An example of information entropy, i.e., a cost function, of an OCT image, with respect to the change in the coefficients of the second-order phase for dispersion compensation. (b) Depth dependent sensitivity decay of SS-OCT. The horizontal axis is the relative depth from the zero delay point, and the vertical axis is the system sensitivity.

Fig. 4.
Fig. 4.

(a) In vivo human macula measured by SS-OCT and (b) the same image obtained using an MIP based despeckle filter.

Fig. 5.
Fig. 5.

(a) Fundus preview image of the optic nerve head created by squared spectral integration. (b) Standard OCT fundus image created from the same measurement.

Fig. 6.
Fig. 6.

OCT B-scan of in vivo human macula captured using (a) 1-μm OCT and (b) 830-nm SD-OCT.

Fig. 7.
Fig. 7.

In vivo human optic nerve head measured by using SS-OCT and PS-SD-OCT. (a) and (b) are the horizontal OCT B-mode images captured using 1-μm SS-OCT Click on the figures for a 2.4 MB movie (10.7 MB version is also available). [Media 1] [Media 2] (c) and (d) are the corresponding OCT images captured using 830-nm PS-SD-OCT, and (e) and (f) are the corresponding phase retardation images (1.9 MB movie). [Media 3] [Media 4] (g) is an OCT fundus.

Fig. 8.
Fig. 8.

Visualization of the sclera of in vivo human macula. (b) OCT B-scan images show the penetration to the sclera. (a) Positions of the B-scan images are indicated by red lines in the OCT fundus.

Fig. 9.
Fig. 9.

(a) 3D volume-rendered OCT images of in vivo human macula in which the OCT intensity signal is displayed in an inverted-gray color map and the choroidal vessels are displayed with an orange-red color map. Click on the figure for movies (short version is 2.3 MB and long version is 4.4 MB). [Media 5] (b) En face slices of the volumetric rendering at several different depths, where a semitransparent color map is applied to the OCT intensity volume. [Media 6] (c) A stereoview of the choroidal vessels of the macula.

Fig. 10.
Fig. 10.

(a) 3D reconstruction of the choroidal vessels of a human optic nerve head (orangered color map) overlaid by the intensity OCT (inverted gray color map). The volume is sectioned along the depth, where the sectioning plane is slightly slanted from the en face plane. Click on the figure for a movie (2.3 MB or 5.1 MB versions). [Media 8][Media 7] (b) 3D rendering of the choroidal vasculature and (c) its stereoview. (d) En face average projection of the choroidal vasculature.

Fig. 11.
Fig. 11.

Comparison between (a) S-OCA and (b) the corresponding intensity-inverted volume.

Tables (1)

Tables Icon

Table 1. Comparison between S-OCA and other angiography methods. D-OCT, Doppler OCT; CIP, choroidal intensity projection.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S j ( k ) 2 j = S e ( k ) 2 cos 2 ϕ j ( k ) j .
S e ( k ) = 2 N j N S j ( k ) 2 .
W ( k ) = S e ( k ) S e ( k ) 2 + n c Gauss ( k )
ε = x , z P ( x , z ) log P ( x , z )
I n < I z ' ( x , y ) < μ z ' 1 2 σ z '

Metrics