Abstract

An array of high numerical aperture parabolic micromirrors (NA = 0.96) is used to generate multiple optical tweezers and to trap micron-sized dielectric particles in three dimensions within a fluidic device. The array of micromirrors allows generating arbitrarily large numbers of 3D traps, since the whole trapping area is not restricted by the field-of-view of the high-NA microscope objectives used in traditional tweezers arrangements. Trapping efficiencies of Qmaxr ≃ 0.22, comparable to those of conventional tweezers, have been measured. Moreover, individual fluorescence light from all the trapped particles can be collected simultaneously with the high-NA of the micromirrors. This is demonstrated experimentally by capturing more than 100 fluorescent micro-beads in a fluidic environment. Micromirrors may easily be integrated in microfluidic devices, offering a simple and very efficient solution for miniaturized optical traps in lab-on-a-chip devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  3. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
    [CrossRef] [PubMed]
  4. F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
    [CrossRef] [PubMed]
  5. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
    [CrossRef] [PubMed]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  7. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
    [CrossRef]
  8. S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express 13, 6956-6963 (2005).
    [CrossRef] [PubMed]
  9. J. M. Fournier, M. M. Burns, and J. A. Golovchenko, "Writing Diffractive Structures by Optical Trapping," in Practical Holography IX, S. A. Benton, eds., Proc. SPIE 2406, pp. 101-111 (1995).
  10. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
    [CrossRef]
  11. J. Rohner, J. M. Fournier, P. Jacquot, F. Merenda, and R. P. Salathe, "Multiple optical trapping in high gradient interference fringes," in Optical Trapping and Optical Micromanipulation III, K. Dholakia and G. C. Spalding, eds., Proc. SPIE 6326, 6326-07 (2006).
  12. C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," Chemphyschem 7, 329-332 (2006).
    [CrossRef]
  13. Y. Ogura, K. Kagawa, and J. Tanida, "Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources," Appl. Opt. 40, 5430-5435 (2001).
    [CrossRef]
  14. C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
    [CrossRef]
  15. J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004).
    [CrossRef]
  16. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern-Formation and Flow-Control of Fine Particles by Laser-Scanning Micromanipulation," Opt. Lett. 16, 1463-1465 (1991).
    [CrossRef] [PubMed]
  17. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  18. R. L. Eriksen, P. C. Mogensen, and J. Gluckstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27, 267-269 (2002).
    [CrossRef]
  19. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a Fiberoptic Light-Force Trap," Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  20. S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, "Monolithic integration of microfluidic channels and semiconductor lasers," Opt. Express 14, 7723-7729 (2006).
    [CrossRef] [PubMed]
  21. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006).
    [CrossRef]
  22. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A-Pure Appl. Op. 8, S407-S429 (2006).
    [CrossRef]
  23. K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
    [CrossRef]
  24. P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
    [CrossRef]
  25. A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  26. S. Wakiya, "Viscous Flows Past a Spheroid," J. Phys. Soc. Jpn 12, 1130-1141 (1957).
    [CrossRef]
  27. M. Lieb and A. Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy," Opt. Express 8, 458-474 (2001).
    [CrossRef] [PubMed]
  28. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
    [CrossRef]
  29. A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
    [CrossRef]
  30. F. Merenda, G. Boer, J. Rohner, G. Delacretaz, and R. P. Salathe, "Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow," Opt. Express 14, 1685-1699 (2006).
    [CrossRef] [PubMed]
  31. W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric Study of the Forces on Microspheres Held by Optical Tweezers," Appl. Opt. 33, 1735-1748 (1994).
    [CrossRef] [PubMed]
  32. C. G. Xie, M. A. Dinno, and Y. Q. Li, "Near-infrared Raman spectroscopy of single optically trapped biological cells," Opt. Lett. 27, 249-251 (2002).
    [CrossRef]
  33. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
    [CrossRef]

2006 (4)

C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," Chemphyschem 7, 329-332 (2006).
[CrossRef]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006).
[CrossRef]

F. Merenda, G. Boer, J. Rohner, G. Delacretaz, and R. P. Salathe, "Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow," Opt. Express 14, 1685-1699 (2006).
[CrossRef] [PubMed]

S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, "Monolithic integration of microfluidic channels and semiconductor lasers," Opt. Express 14, 7723-7729 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, "Optical manipulation of microparticles and cells on silicon nitride waveguides," Opt. Express 13, 6956-6963 (2005).
[CrossRef] [PubMed]

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

2004 (3)

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004).
[CrossRef]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

2003 (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

2002 (3)

2001 (5)

M. Lieb and A. Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy," Opt. Express 8, 458-474 (2001).
[CrossRef] [PubMed]

Y. Ogura, K. Kagawa, and J. Tanida, "Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources," Appl. Opt. 40, 5430-5435 (2001).
[CrossRef]

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
[CrossRef]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

1999 (1)

1998 (2)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

1997 (1)

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1991 (1)

1986 (1)

1970 (1)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

1957 (1)

S. Wakiya, "Viscous Flows Past a Spheroid," J. Phys. Soc. Jpn 12, 1130-1141 (1957).
[CrossRef]

Allen, L.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Arai, F.

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Auroux, P. A.

D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
[CrossRef] [PubMed]

Bain, C. D.

C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," Chemphyschem 7, 329-332 (2006).
[CrossRef]

Berns, M. W.

Bettiol, A. A.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Biran, I.

J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004).
[CrossRef]

Bjorkholm, J. E.

Boer, G.

Butler, W. F.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Chatelain, F.

Cheong, F. C.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Chu, S.

Colas, G.

Constable, A.

Cran-McGreehin, S. J.

Dandliker, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

de Rooij, N. F.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

Dees, B.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Delacretaz, G.

Derouard, J.

Dholakia, K.

S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, "Monolithic integration of microfluidic channels and semiconductor lasers," Opt. Express 14, 7723-7729 (2006).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Dinno, M. A.

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Dziedzic, J. M.

Eisner, M.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Enger, J.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Eriksen, R. L.

Fedeli, J. M.

Forster, A. H.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Fuchs, A.

Fukuda, T.

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

Gaugiran, S.

Getin, S.

Gluckstad, J.

Goksor, M.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Grier, D. G.

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Guo, C. K.

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006).
[CrossRef]

Hagberg, P.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Hagen, N.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Haist, T.

Hanstorp, D.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Haselbeck, S.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Herzig, H. P.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Horio, K.

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

Ichikawa, A.

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

Im, K. B.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Iossifidis, D.

D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
[CrossRef] [PubMed]

Itoigawa, K.

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

Joo, I. J.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Kagawa, K.

Kariv, I.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Kim, H. I.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Kim, J.

Kim, P. S.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Kitamura, N.

Koshioka, M.

Krauss, T. F.

Lee, Y. Y. G.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Li, Y. Q.

Lieb, M.

Lim, C. T.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Liu, Z. H.

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Manz, A.

D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
[CrossRef] [PubMed]

Marchand, P. J.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Masuhara, H.

McGloin, D.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Meixner, A.

Mellor, C. D.

C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," Chemphyschem 7, 329-332 (2006).
[CrossRef]

Mercer, E. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Merenda, F.

Mervis, J.

Misawa, H.

Mogensen, P. C.

Nussbaum, P.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

O’Neill, A. T.

A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
[CrossRef]

Ogawa, M.

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

Ogura, Y.

Oh, C. H.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Padgett, M. J.

A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Park, B. C.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Prentiss, M.

Ramser, K.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Raymond, D. E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Reicherter, M.

Reyes, D. R.

D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
[CrossRef] [PubMed]

Rohner, J.

Roulet, J. C.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

Salathe, R. P.

Sasaki, K.

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Sonek, G. J.

Song, S. H.

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

Sow, C. H.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Tam, J. M.

J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004).
[CrossRef]

Tanida, J.

Tiziani, H. J.

Tu, E.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Verpoorte, E.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

Volke, R.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Volkel, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

Wagemann, E. U.

Wakiya, S.

S. Wakiya, "Viscous Flows Past a Spheroid," J. Phys. Soc. Jpn 12, 1130-1141 (1957).
[CrossRef]

Walt, D. R.

J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004).
[CrossRef]

Wang, M. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Watt, F.

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Wright, W. H.

Xie, C. G.

Yang, J.

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006).
[CrossRef]

Yang, J. M.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Yuan, L. B.

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12,510-12,516 (2006).
[CrossRef]

Zarinetchi, F.

Zhang, H. C.

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Anal. Chem. (1)

D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Anal. Chem. 74, 2623-2636 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

C. H. Sow, A. A. Bettiol, Y. Y. G. Lee, F. C. Cheong, C. T. Lim, and F. Watt, "Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing," Appl. Phys. B 78, 705-709 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Appl. Phys. Lett. 84, 4289-4291 (2004).
[CrossRef]

Biophys. J. (1)

A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

Chemphyschem (1)

C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," Chemphyschem 7, 329-332 (2006).
[CrossRef]

Electrophoresis (1)

F. Arai, A. Ichikawa, M. Ogawa, T. Fukuda, K. Horio, and K. Itoigawa, "High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis," Electrophoresis 22, 283-288 (2001).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, "Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection," J. Microelectromech. Syst. 10, 482-491 (2001).
[CrossRef]

J. Mod. Opt. (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

J. Phys. Soc. Jpn (1)

S. Wakiya, "Viscous Flows Past a Spheroid," J. Phys. Soc. Jpn 12, 1130-1141 (1957).
[CrossRef]

Lab. Chip (1)

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

K. B. Im, H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park, "Optical trapping forces by a focused beam through two media with different refractive indices," Opt. Commun. 226, 25-31 (2003).
[CrossRef]

A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Pure Appl. Opt. (1)

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Other (3)

J. Rohner, J. M. Fournier, P. Jacquot, F. Merenda, and R. P. Salathe, "Multiple optical trapping in high gradient interference fringes," in Optical Trapping and Optical Micromanipulation III, K. Dholakia and G. C. Spalding, eds., Proc. SPIE 6326, 6326-07 (2006).

J. M. Fournier, M. M. Burns, and J. A. Golovchenko, "Writing Diffractive Structures by Optical Trapping," in Practical Holography IX, S. A. Benton, eds., Proc. SPIE 2406, pp. 101-111 (1995).

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A-Pure Appl. Op. 8, S407-S429 (2006).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (2495 KB)     
» Media 2: MOV (900 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Mirror parameters and basic focusing geometry. (b) Geometry of the focusing mirrors used in the described experiments. The reflection on the mirror takes place within a solid media of refractive index nsolid , allowing a higher NA to be generated (c) Numerical aperture achievable with parabolic mirrors, both considering reflection in air (n = 1) or in a higher refractive index solid (n = 1.56), compared to that of a single plano-convex lens (lower straight line, paraxial approximaton), as a function of the diameter d to radius-of-curvature R ratio. The star (∗) indicates the aperture achieved in the present work.

Fig. 2.
Fig. 2.

Fabrication of the micromirror array: (a) 60 nm of gold are evaporated on an array of parabolic microlenses (b) Negative replication in UV-curing resist forms the focusing micromirror array. The thin gold layer detaches from the microlens array, forming the reflective surface on the hardened resist (c) A 80 μm thick cover-glass is glued on top with additional resist merging the micromirrors.

Fig. 3.
Fig. 3.

(a) Schematic illustration of the assembled fluidic device. The solution of particles flows between two microscope slides: the bottom microscope slide embedding the micromirror array and the top microscope slide with holes for fluidic access. Simply directing a collimated laser beam on the fluidic device creates the traps in the fluidic channel. (b) Picture of the assembled fluidic device. The array of golden micromirrors can be seen in the center.

Fig. 4.
Fig. 4.

Optical set-up. Left: lasers for trapping and for fluorescence excitation. Right-above: fluorescence signals detection. The light emitted by the particles is collected at high-NA by the micromirrors and relayed onto CCD2 trough a 4f system. F1 and F2 are custom designed filters being highly reflective for the trapping laser and fluorescence excitation laser wavelengths, but transmissive for emitted fluorescence. Right-below: observation is performed in transmission through micromirror array partially transparent to visible light.

Fig. 5.
Fig. 5.

(Movie 2.43MB) Transmission image (10×) of four 9.33μm diameter polystyrene beads trapped in three dimensions at the focus of the parabolic micromirrors. The movie shows real time trapping both at 10× and 5× magnifications, and escape velocity measurements. [Media 1]

Fig. 6.
Fig. 6.

(Movie 899KB) Sequence showing fluorescence light detection using the micromirrors. The colored circles are not the particles themselves, but the micromirrors ”turning-on” as particles progressively fill the traps. The fluorescence light emitted by the trapped particles is collected with high-NA by the mirrors, and relayed onto the color camera though a 4-f system. [Media 2]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N A PM = n sin [ 2 arctan ( d 2 R ) ]
N A L ( n lens 1 ) d 2 R
N A PM N A L 3.57 n , d R < < 1
Q r max = c F r max n fluid P trap = c ( 6 πηa v max ) n fluid P trap
P trap = α I 0 A = α P tot 2 ( d w ) 2

Metrics