Abstract

We report on a passive all-optical clock recovery technique based on data signal filtering with a Fabry-Perot filter, tested in a 40 Gb/s transmission system. We have simulated the clock recovery principle to choose the filter finesse and then investigate with experiment the method for 43 Gbit/s RZ signal clock recovery ahead of a receiver. We use Bit Error Rate assessment to demonstrate its system compatibility and to evaluate both its pattern sequence length tolerance and, for the first time, its clock locking range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, K. Smith, and D. M. Patrick, “All Optical Clock Recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323 (1993).
    [Crossref]
  2. D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
    [Crossref]
  3. D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7
  4. B. Sartorius, “All-optical clock recovery for 3R optical regeneration”, in Proceedings Optical Fiber Communication, (Optical Society of America, 2001), paper MG7-1.
  5. T. Miyazaki, H. Sotobayashi, and W. Chujo, “Synchronous optical demultiplexing and sampling of 80 Gb/s OTDM signals by optically recovered clock using mode-locked laser diode and symetric Mach-Zehnder switch,” Photon. Technol. Lett. 14, 1734 (2003).
    [Crossref]
  6. M. Jinno and T. Matsumoto, “Optical tank circuits used for all optical timing recovery,” J. Quantum Electron. 28, 895 (1992).
    [Crossref]
  7. G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
    [Crossref]
  8. V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202
  9. Ch. Kouloumentas, A. Tzanakaki, and I. Tomkos, “Clock recovery at 160 gb/s and beyond, using a fiber-based optical power limiter,” Photon. Technol. Lett. 18, 2365 (2006).
    [Crossref]
  10. I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
    [Crossref]
  11. T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
    [Crossref]
  12. C. Bornholdt, J. Slovak, H. J. Thiele, and B. Sartorius, “Optical versus electrical clock recovery at 40 Gbit/s,” in Proceedings of ECOC, (European Conference on Optical Communications, Stockholm, Sweden, 2004), paper We4 P.080
  13. C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
    [Crossref]
  14. V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in All Optical Clock Recovery at 43 Gb/s for 3R regeneration applications,” in Proceedings of ECOC, (European Conference on Optical Communications, Cannes, France, 2006), paper We3-P-91, pp.303–304
  15. G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Second Edition, (Van Nostrand Reinhold, New York, 1993)
  16. X. Zhou, C. Lu, P. Shum, H. H. M. Shalaby, T. H. Cheng, and P. Ye “A performance analysis of an all-optical clock extraction circuit based on Fabry-Perot filter,” J. Lightwave Technol. 19, 603 (2001).
    [Crossref]

2006 (1)

Ch. Kouloumentas, A. Tzanakaki, and I. Tomkos, “Clock recovery at 160 gb/s and beyond, using a fiber-based optical power limiter,” Photon. Technol. Lett. 18, 2365 (2006).
[Crossref]

2004 (1)

G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
[Crossref]

2003 (1)

T. Miyazaki, H. Sotobayashi, and W. Chujo, “Synchronous optical demultiplexing and sampling of 80 Gb/s OTDM signals by optically recovered clock using mode-locked laser diode and symetric Mach-Zehnder switch,” Photon. Technol. Lett. 14, 1734 (2003).
[Crossref]

2002 (1)

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

2001 (2)

X. Zhou, C. Lu, P. Shum, H. H. M. Shalaby, T. H. Cheng, and P. Ye “A performance analysis of an all-optical clock extraction circuit based on Fabry-Perot filter,” J. Lightwave Technol. 19, 603 (2001).
[Crossref]

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

2000 (2)

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

1993 (1)

A. D. Ellis, K. Smith, and D. M. Patrick, “All Optical Clock Recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323 (1993).
[Crossref]

1992 (1)

M. Jinno and T. Matsumoto, “Optical tank circuits used for all optical timing recovery,” J. Quantum Electron. 28, 895 (1992).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Second Edition, (Van Nostrand Reinhold, New York, 1993)

Avramoloulos, H.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Berger, J.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Bintjas, C.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Bornholdt, C.

C. Bornholdt, J. Slovak, H. J. Thiele, and B. Sartorius, “Optical versus electrical clock recovery at 40 Gbit/s,” in Proceedings of ECOC, (European Conference on Optical Communications, Stockholm, Sweden, 2004), paper We4 P.080

Bramerie, L.

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in All Optical Clock Recovery at 43 Gb/s for 3R regeneration applications,” in Proceedings of ECOC, (European Conference on Optical Communications, Cannes, France, 2006), paper We3-P-91, pp.303–304

Cheng, T. H.

Chiaroni, D.

D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7

Chujo, W.

T. Miyazaki, H. Sotobayashi, and W. Chujo, “Synchronous optical demultiplexing and sampling of 80 Gb/s OTDM signals by optically recovered clock using mode-locked laser diode and symetric Mach-Zehnder switch,” Photon. Technol. Lett. 14, 1734 (2003).
[Crossref]

Ciaramella, E.

G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
[Crossref]

Clouet, B.

V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202

Contestabile, G.

G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
[Crossref]

D’Errico, A.

G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
[Crossref]

Deng, K.-L.

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

Dreyer, K. F

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Second Edition, (Van Nostrand Reinhold, New York, 1993)

Ellis, A. D.

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

A. D. Ellis, K. Smith, and D. M. Patrick, “All Optical Clock Recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323 (1993).
[Crossref]

Emery, J-Y.

D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7

Feiste, U.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Guekos, G.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Hilliger, E.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Jinno, M.

M. Jinno and T. Matsumoto, “Optical tank circuits used for all optical timing recovery,” J. Quantum Electron. 28, 895 (1992).
[Crossref]

Johnson, J. E.

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

Jourdan, A.

D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7

Kalyvas, M.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Kelly, A. E.

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

Kouloumentas, Ch.

Ch. Kouloumentas, A. Tzanakaki, and I. Tomkos, “Clock recovery at 160 gb/s and beyond, using a fiber-based optical power limiter,” Photon. Technol. Lett. 18, 2365 (2006).
[Crossref]

Le-Guyader, B.

V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202

Lobo, S.

V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in All Optical Clock Recovery at 43 Gb/s for 3R regeneration applications,” in Proceedings of ECOC, (European Conference on Optical Communications, Cannes, France, 2006), paper We3-P-91, pp.303–304

Lu, C.

Ludwig, R.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Matsumoto, T.

M. Jinno and T. Matsumoto, “Optical tank circuits used for all optical timing recovery,” J. Quantum Electron. 28, 895 (1992).
[Crossref]

Mikkelsen, B.

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

Miyazaki, T.

T. Miyazaki, H. Sotobayashi, and W. Chujo, “Synchronous optical demultiplexing and sampling of 80 Gb/s OTDM signals by optically recovered clock using mode-locked laser diode and symetric Mach-Zehnder switch,” Photon. Technol. Lett. 14, 1734 (2003).
[Crossref]

Nesset, D.

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

Oxenlowe, L. K.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Patrick, D. M.

A. D. Ellis, K. Smith, and D. M. Patrick, “All Optical Clock Recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323 (1993).
[Crossref]

Phillips, I. D.

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

Pleros, N.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Presi, M.

G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
[Crossref]

Raybon, G.

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

Roncin, V.

V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in All Optical Clock Recovery at 43 Gb/s for 3R regeneration applications,” in Proceedings of ECOC, (European Conference on Optical Communications, Cannes, France, 2006), paper We3-P-91, pp.303–304

Sartorius, B.

C. Bornholdt, J. Slovak, H. J. Thiele, and B. Sartorius, “Optical versus electrical clock recovery at 40 Gbit/s,” in Proceedings of ECOC, (European Conference on Optical Communications, Stockholm, Sweden, 2004), paper We4 P.080

B. Sartorius, “All-optical clock recovery for 3R optical regeneration”, in Proceedings Optical Fiber Communication, (Optical Society of America, 2001), paper MG7-1.

Schmidt, C.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Schubert, C.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Shalaby, H. H. M.

Shum, P.

Simon, J-C

V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202

Simon, J-C.

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in All Optical Clock Recovery at 43 Gb/s for 3R regeneration applications,” in Proceedings of ECOC, (European Conference on Optical Communications, Cannes, France, 2006), paper We3-P-91, pp.303–304

Slovak, J.

C. Bornholdt, J. Slovak, H. J. Thiele, and B. Sartorius, “Optical versus electrical clock recovery at 40 Gbit/s,” in Proceedings of ECOC, (European Conference on Optical Communications, Stockholm, Sweden, 2004), paper We4 P.080

Smith, K.

A. D. Ellis, K. Smith, and D. M. Patrick, “All Optical Clock Recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323 (1993).
[Crossref]

Sotobayashi, H.

T. Miyazaki, H. Sotobayashi, and W. Chujo, “Synchronous optical demultiplexing and sampling of 80 Gb/s OTDM signals by optically recovered clock using mode-locked laser diode and symetric Mach-Zehnder switch,” Photon. Technol. Lett. 14, 1734 (2003).
[Crossref]

Tancevsky, L.

D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7

Theophilopoulos, G.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Thiele, H. J.

C. Bornholdt, J. Slovak, H. J. Thiele, and B. Sartorius, “Optical versus electrical clock recovery at 40 Gbit/s,” in Proceedings of ECOC, (European Conference on Optical Communications, Stockholm, Sweden, 2004), paper We4 P.080

Tomkos, I.

Ch. Kouloumentas, A. Tzanakaki, and I. Tomkos, “Clock recovery at 160 gb/s and beyond, using a fiber-based optical power limiter,” Photon. Technol. Lett. 18, 2365 (2006).
[Crossref]

Tong, D. T. K.

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

Trommer, D.

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

Tzanakaki, A.

Ch. Kouloumentas, A. Tzanakaki, and I. Tomkos, “Clock recovery at 160 gb/s and beyond, using a fiber-based optical power limiter,” Photon. Technol. Lett. 18, 2365 (2006).
[Crossref]

Weber, H. G.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Widdowson, T.

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

Yamamoto, T.

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

Ye, P.

Yiannopoulos, K.

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Zami, T.

D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7

Zhou, X.

Electron. Lett. (4)

A. D. Ellis, K. Smith, and D. M. Patrick, “All Optical Clock Recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323 (1993).
[Crossref]

D. T. K. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett. 36, 1951 (2000).
[Crossref]

I. D. Phillips, A. D. Ellis, T. Widdowson, D. Nesset, A. E. Kelly, and D. Trommer, “100 Gbit/s optical clock recovery using electrical phaselocked loopconsisting of commercially available components,” Electron. Lett. 36, 650 (2000).
[Crossref]

T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loopwith interferometric optical switch based on semiconductor opticalamplifier,” Electron. Lett. 37, 509 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Quantum Electron. (1)

M. Jinno and T. Matsumoto, “Optical tank circuits used for all optical timing recovery,” J. Quantum Electron. 28, 895 (1992).
[Crossref]

Photon. Technol. Lett. (4)

G. Contestabile, A. D’Errico, M. Presi, and E. Ciaramella, “40 GHz all optical clock extraction using a semiconductor assisted Fabry-Perot Filter,” Photon. Technol. Lett. 16, 2523 (2004).
[Crossref]

T. Miyazaki, H. Sotobayashi, and W. Chujo, “Synchronous optical demultiplexing and sampling of 80 Gb/s OTDM signals by optically recovered clock using mode-locked laser diode and symetric Mach-Zehnder switch,” Photon. Technol. Lett. 14, 1734 (2003).
[Crossref]

Ch. Kouloumentas, A. Tzanakaki, and I. Tomkos, “Clock recovery at 160 gb/s and beyond, using a fiber-based optical power limiter,” Photon. Technol. Lett. 18, 2365 (2006).
[Crossref]

C. Bintjas, K. Yiannopoulos, N. Pleros, G. Theophilopoulos, M. Kalyvas, H. Avramoloulos, and G. Guekos, “Clock recovery circuit for optical packets,” Photon. Technol. Lett. 14, 1363 (2002).
[Crossref]

Other (6)

V. Roncin, S. Lobo, L. Bramerie, and J-C. Simon, “Phase noise reduction in All Optical Clock Recovery at 43 Gb/s for 3R regeneration applications,” in Proceedings of ECOC, (European Conference on Optical Communications, Cannes, France, 2006), paper We3-P-91, pp.303–304

G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Second Edition, (Van Nostrand Reinhold, New York, 1993)

C. Bornholdt, J. Slovak, H. J. Thiele, and B. Sartorius, “Optical versus electrical clock recovery at 40 Gbit/s,” in Proceedings of ECOC, (European Conference on Optical Communications, Stockholm, Sweden, 2004), paper We4 P.080

V. Roncin, B. Le-Guyader, S. Lobo, B. Clouet, and J-C Simon, “43 Gbit/s bit error rate assessment of a simple All Optical Clock Recovery scheme,” in Proceedings of ECOC, (European Conference on Optical Communications, Glasgow, Scotland, 2005), paper Th1.3.7, pp. 201–202

D. Chiaroni, A. Jourdan, T. Zami, J-Y. Emery, and L. Tancevsky. “Toward 10 Tbit/s optical packet routers for backbone,” in Proceedings of ECOC, (European Conference on Optical Communications, Munich, Germany, 2000), paper Th 10.4.7

B. Sartorius, “All-optical clock recovery for 3R optical regeneration”, in Proceedings Optical Fiber Communication, (Optical Society of America, 2001), paper MG7-1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical Clock recovery principle using high finesse Fabry-Perot Filter.

Fig. 2.
Fig. 2.

Simulation of optically recovered clock re-modulation. Plot of the Eye Opening factor in linear scale versus the Fabry-Perot Filter finesse: without SOA (up-triangles) and with SOA (squares) and corresponding Eye Diagrams for a finesse value of 500.

Fig. 3.
Fig. 3.

43 Gbit/s back to back experimental set-up. Tx: transmitter, Rx :receiver, FS: Frequency Synthesizer, PD: high-speed Photo-detector, OCR: Optical Clock Recovery, FD: Frequency Divider by 2, ASE: amplified spontaneous emission source.

Fig. 4.
Fig. 4.

Stability and performance of the clock recovery scheme. Receiver sensitivity measurement with the reference clock (squares) and with optical clock recovery (triangles)

Fig. 5.
Fig. 5.

Penalty introduced by input signal frequency modulation detuning for two electronic frequency dividers. Circles: analogue frequency divider. Squares: digital frequency divider.

Fig. 6.
Fig. 6.

Pattern sequence length influence on receiver sensitivity using optically recovered clock synchronisation.

Tables (1)

Tables Icon

Table 1. System parameters for optical clock recovery simulation with Optisystem software

Metrics