Abstract

A novel all-optical transversal filter with negative coefficients and tap doubling is proposed and experimentally demonstrated. Based on polarization modulation using the anisotropy of the electro-optic coefficient of LiNbO3 crystals, negative and positive coefficients are simultaneously generated. Tap doubling is also achieved by using wavelength- and polarization-dependent time delays in fiber. Due to the orthogonal polarity between the two coefficients of each wavelength, the proposed filter is free from coherent interference and the synthesis of filter taps is performed in the optical domain. The experimental results demonstrated that stable 6-tap bandpass filter characteristics can be obtained by using only three optical sources.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
    [CrossRef]
  2. B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
    [CrossRef]
  3. J. Capmany, D. Pastor, and B. Ortega, "New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays," IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
    [CrossRef]
  4. B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
    [CrossRef]
  5. A. P. Foord, P. A. Davies, and P. A. Greenhalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing," Electron. Lett. 32, 390-391 (1996).
    [CrossRef]
  6. J. Mora, B. Ortega, J. Capmany, J. L. Cruz, M. V. Andres, D. Pastor, and S. Sales, "Automatic tunable and reconfigurable fiber-optic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings," Opt. Express 10, 1291-1298 (2002).
    [PubMed]
  7. B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
    [CrossRef]
  8. S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
    [CrossRef]
  9. E. Hu, Y. Hsueh, K. Wong, M. Marhic, L. Kazovsky, K. Shimizu, and N. Kikuchi, "4-Level direct-detection polarization shift-keying (DDPolSK) system with phase modulators," in Proc. OFC 2003, Atlanta, GA, 647-649 (2003).
  10. S. S. Pun, C. K. Chan, and L. K. Chen, "A novel optical frequency-shift-keying transmitter based on polarization modulation," IEEE Photon. Technol. Lett. 17, 1528-1530 (2005).
    [CrossRef]
  11. C. K. Oh, T. -Y. Kim, S. H. Baek, and C. -S. Park, "Photonic microwave notch filter using cross polarization modulation in highly nonlinear fiber and polarization-dependent optical delay in high birefringence fiber," Opt. Express 14, 6628-6633 (2006).
    [CrossRef] [PubMed]
  12. D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
    [CrossRef]
  13. G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett. 33, 74-75 (1997).
    [CrossRef]
  14. J. Dhliwayo, A. Zhang, and R. Nathoo, "Measurement of low differential group delay and fiber birefringence," Opt. Eng. 42, 1896-1900 (2003).
    [CrossRef]

2006 (2)

2005 (1)

S. S. Pun, C. K. Chan, and L. K. Chen, "A novel optical frequency-shift-keying transmitter based on polarization modulation," IEEE Photon. Technol. Lett. 17, 1528-1530 (2005).
[CrossRef]

2004 (1)

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
[CrossRef]

2003 (2)

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
[CrossRef]

J. Dhliwayo, A. Zhang, and R. Nathoo, "Measurement of low differential group delay and fiber birefringence," Opt. Eng. 42, 1896-1900 (2003).
[CrossRef]

2002 (1)

1999 (1)

J. Capmany, D. Pastor, and B. Ortega, "New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays," IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

1996 (1)

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

1995 (1)

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

1994 (1)

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

1984 (1)

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

Andres, M. V.

Baek, S. H.

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

J. Mora, B. Ortega, J. Capmany, J. L. Cruz, M. V. Andres, D. Pastor, and S. Sales, "Automatic tunable and reconfigurable fiber-optic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings," Opt. Express 10, 1291-1298 (2002).
[PubMed]

J. Capmany, D. Pastor, and B. Ortega, "New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays," IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

Chan, C. K.

S. S. Pun, C. K. Chan, and L. K. Chen, "A novel optical frequency-shift-keying transmitter based on polarization modulation," IEEE Photon. Technol. Lett. 17, 1528-1530 (2005).
[CrossRef]

Chen, L. K.

S. S. Pun, C. K. Chan, and L. K. Chen, "A novel optical frequency-shift-keying transmitter based on polarization modulation," IEEE Photon. Technol. Lett. 17, 1528-1530 (2005).
[CrossRef]

Corral, J. L.

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
[CrossRef]

Cruz, J. L.

Davies, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

Dhliwayo, J.

J. Dhliwayo, A. Zhang, and R. Nathoo, "Measurement of low differential group delay and fiber birefringence," Opt. Eng. 42, 1896-1900 (2003).
[CrossRef]

Foord, A. P.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

Goodman, J. W.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Greenhalgh, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

Johns, S.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Keefer, C.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Kim, T. -Y.

Marti, J.

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

Mora, J.

Moslehi, B.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Nathoo, R.

J. Dhliwayo, A. Zhang, and R. Nathoo, "Measurement of low differential group delay and fiber birefringence," Opt. Eng. 42, 1896-1900 (2003).
[CrossRef]

Norton, D.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

Oh, C. K.

Ortega, B.

Park, C. -S.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

J. Mora, B. Ortega, J. Capmany, J. L. Cruz, M. V. Andres, D. Pastor, and S. Sales, "Automatic tunable and reconfigurable fiber-optic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings," Opt. Express 10, 1291-1298 (2002).
[PubMed]

J. Capmany, D. Pastor, and B. Ortega, "New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays," IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

Polo, V.

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
[CrossRef]

Pun, S. S.

S. S. Pun, C. K. Chan, and L. K. Chen, "A novel optical frequency-shift-keying transmitter based on polarization modulation," IEEE Photon. Technol. Lett. 17, 1528-1530 (2005).
[CrossRef]

Sales, S.

Shaw, H. J.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

Soref, R.

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

Tur, M.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Vidal, B.

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
[CrossRef]

Zhang, A.

J. Dhliwayo, A. Zhang, and R. Nathoo, "Measurement of low differential group delay and fiber birefringence," Opt. Eng. 42, 1896-1900 (2003).
[CrossRef]

Electron. Lett. (4)

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett. 39, 547-549 (2003).
[CrossRef]

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing," Electron. Lett. 32, 390-391 (1996).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fiber-optic delay line filters with negative coefficients," Electron. Lett. 31, 1095-1096 (1995).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett. 33, 74-75 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. S. Pun, C. K. Chan, and L. K. Chen, "A novel optical frequency-shift-keying transmitter based on polarization modulation," IEEE Photon. Technol. Lett. 17, 1528-1530 (2005).
[CrossRef]

D. Norton, S. Johns, C. Keefer, and R. Soref, "Tunable microwave filter using high dispersion fiber time delays," IEEE Photon. Technol. Lett. 6, 831-832 (1994).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett. 16, 257-259 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. Capmany, D. Pastor, and B. Ortega, "New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays," IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

J. Dhliwayo, A. Zhang, and R. Nathoo, "Measurement of low differential group delay and fiber birefringence," Opt. Eng. 42, 1896-1900 (2003).
[CrossRef]

Opt. Express (2)

Proc. IEEE (1)

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, "Fiber-optic lattice signal processing," Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Other (1)

E. Hu, Y. Hsueh, K. Wong, M. Marhic, L. Kazovsky, K. Shimizu, and N. Kikuchi, "4-Level direct-detection polarization shift-keying (DDPolSK) system with phase modulators," in Proc. OFC 2003, Atlanta, GA, 647-649 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Polarization modulation to implement positive and negative coefficients of the filter, Vπ: switching voltage of LiNbO3 crystal, TLP: tunable linear polarizer.

Fig. 2.
Fig. 2.

Description of the proposed all-optical transversal filter with multi-tap architecture: (a) direct-form realization of the proposed filter system, (b) a functional block diagram, (c) time relationships between taps, where λ̅i represents the orthogonal state of λ̅i - A: after polarization modulation, B: after a wavelength-dependent time delay, C: after a polarization-dependent time delay.

Fig. 3.
Fig. 3.

Experimental setup for a 6-tap bandpass filter. LD: laser diode, PC: polarization controller, c: optical coupler, PM: LiNbO3-based phase modulator, AMP: electrical amplifier, EDFA: erbium doped fiber amplifier, OC: optical circulator, AWG: arrayed waveguide grating, M: optical mirror, Hi-Bi: high birefringence fiber, ATT: optical attenuator, PD: photodiode.

Fig. 4.
Fig. 4.

Measured polarization modulated signals after wavelength-dependent time delay, (a) non-inverted signals, (b) inverted signals.

Fig. 5.
Fig. 5.

Optical spectrum at photodiode input. (λ1=1547.2 nm, λ2 =1548.8nm, λ3=1550.4nm).

Fig. 6.
Fig. 6.

Frequency response of the proposed transversal filter: (a) with two taps, (b) with four taps, (c) with six taps. Solid lines and dotted lines represent the experimental and theoretical results, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H ( f ) = k = 1 N 2 ( a 2 k 1 e j 2 πf ( 2 k 1 ) T d + a 2 k e j 2 πf ( 2 k ) T d ) ,

Metrics