Abstract

We present a field-trial implementation of the soft-failure approach to polarization-mode dispersion (PMD) impairment mitigation, in which information about the PMD of the installed link is utilized by our modified control plane software to make decisions on data routing over available links. This allows us to maintain loss-free end-to-end data service, even at high PMD levels.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
    [CrossRef]
  2. A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
    [CrossRef]
  3. M. Karlsson, J. Brentel, and P. A. Andrekson, "Long-Term Measurement of PMD and Polarization Drift in Installed Fibers," J. Lightwave Technol. 18, 941-951 (2000).
    [CrossRef]
  4. H. Kogelnik, R. M. Jopsen, and L. E. Nelson, "Polarization-Mode Dispersion," in Optical Fiber Communications, vol. IVb, I. Kaminow and T. Li, Ed., pp. 725-861 (Academic Press, San Diego, CA, 2002).
  5. M. Akbulut, A. M. Weiner, and P. J. Miller, "Broadband All-Order Polarization Mode Dispersion Compensation Using Liquid-Crystal Modulator Arrays," J. Lightwave Technol. 24, 251-261 (2006).
    [CrossRef]
  6. H. Miao and C. Yang, "Feed-Forward Polarization-Mode Dispersion Compensation With Four Fixed Differential Group Delay Elements," IEEE Photon. Technol. Lett. 16, 1056-1058 (2004).
    [CrossRef]
  7. P. Oswald, C. K. Madsen, and R. L. Konsbruck, "Analysis of Scalable PMD Compensators Using FIR Filters and Wavelength-Dependent Optical Power Measurements," J. Lightwave Technol. 22, 647-657 (2004).
    [CrossRef]
  8. P. B. Phua, H. A. Haus, and E. P. Ippen, "All-Frequency PMD Compensator in Feedforward Scheme," J. Lightwave Technol. 22, 1280-1289 (2004).
    [CrossRef]
  9. D. Peterson, B. Ward, K. Rochford, P. Leo, and G. Simer, "Polarization mode dispersion compensator field trial and field fiber characterization," Opt. Express 10, 614-621 (2002).
    [PubMed]
  10. H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. J. Andrekson, "A Comparison Between Different PMD Compensation Techniques," J. Lightwave Technol. 20, 368-378 (2002).
    [CrossRef]
  11. J. Zweck and C. R. Menyuk, "Detection and Mitigation of Soft Failure due to Polarization-Mode Dispersion in Optical Networks," In Proc. Opt. Fiber Commun. Conf. (OFC2006), Anaheim, CA, Paper OFG5.
  12. H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
    [CrossRef]
  13. A. Farrel and I. Bryskin, GMPLS: Architecture and Applications, The Morgan Kaufmann Series in Networking (Elsevier Inc., San Francisco, CA, 2006).
  14. Information on the DRAGON project is available at http://dragon.maxgigapop.net.
  15. International Telecommunication Union, Telecommunication Standardization Sector of ITU, ITU-T Standard G.694.1, Spectral grids for WDM applications: DWDM frequency grid (2002).
  16. G. Ishikawa and H. Ooi, "Polarization-mode dispersion sensitivity and monitoring in 40-Gbit/s OTDM and l0-Gbit/s NRZ transmission experiments," In Proc. Opt. Fiber Commun. Conf. (OFC1998), San Jose, CA, Paper WC5.
  17. The NUTTCP software is the product of B. Fink and is available at ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/latest/nuttcp.html.
  18. H. van Helvoort, Next Generation SONET: Evolution or Revolution (John Wiley and Sons, Ltd., 2005).
    [CrossRef]
  19. X. Yang and B. Ramamurthy, "Dynamic Routing in Translucent WDM Optical Networks: The Intradomain Case," J. Lightwave Technol. 23, 955-971 (2005).
    [CrossRef]

2006

2005

X. Yang and B. Ramamurthy, "Dynamic Routing in Translucent WDM Optical Networks: The Intradomain Case," J. Lightwave Technol. 23, 955-971 (2005).
[CrossRef]

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

2004

2002

2000

Akbulut, M.

Andrekson, P. A.

Andrekson, P. J.

Aoyagi, M.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Asano, S.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Boroditsky, M.

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

Brentel, J.

Brodsky, M.

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

Carter, G. M.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Goldman, A.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Jopsen, R. M.

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

Karlsson, M.

Kogelnik, H.

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

Konsbruck, R. L.

Lenihan, A. S.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Leo, P.

Madsen, C. K.

Marks, B. S.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Menyuk, C. R.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Miao, H.

H. Miao and C. Yang, "Feed-Forward Polarization-Mode Dispersion Compensation With Four Fixed Differential Group Delay Elements," IEEE Photon. Technol. Lett. 16, 1056-1058 (2004).
[CrossRef]

Miller, P. J.

Nelson, L. E.

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

Okamura, K.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Oswald, P.

Peterson, D.

Phua, P. B.

Ramamurthy, B.

Rochford, K.

Runser, R. J.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Ryu, S.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Samuelsson, R.

Satomi, S.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Simer, G.

Sinkin, O. V.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Sunnerud, H.

Tanaka, S.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Tudury, G. E.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

Ward, B.

Weiner, A. M.

Winzer, P. J.

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

Xie, C.

Yagi, M.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

Yang, C.

H. Miao and C. Yang, "Feed-Forward Polarization-Mode Dispersion Compensation With Four Fixed Differential Group Delay Elements," IEEE Photon. Technol. Lett. 16, 1056-1058 (2004).
[CrossRef]

Yang, X.

Electron. Lett.

M. Yagi, S. Tanaka, S. Satomi, S. Ryu, K. Okamura, M. Aoyagi, and S. Asano, "Field Trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network," Electron. Lett. 41, 492-494 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Goldman, C. R. Menyuk, and G. M. Carter, "Nonlinear Timing Jitter in an Installed Fiber Network With Balanced Dispersion Compensation," IEEE Photon. Technol. Lett. 17, 1558-1560 (2005).
[CrossRef]

H. Miao and C. Yang, "Feed-Forward Polarization-Mode Dispersion Compensation With Four Fixed Differential Group Delay Elements," IEEE Photon. Technol. Lett. 16, 1056-1058 (2004).
[CrossRef]

H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopsen, M. Boroditsky, and M. Brodsky, "First-Order PMD Outage for the Hinge Model," IEEE Photon. Technol. Lett. 17, 1208-1210 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

A. Farrel and I. Bryskin, GMPLS: Architecture and Applications, The Morgan Kaufmann Series in Networking (Elsevier Inc., San Francisco, CA, 2006).

Information on the DRAGON project is available at http://dragon.maxgigapop.net.

International Telecommunication Union, Telecommunication Standardization Sector of ITU, ITU-T Standard G.694.1, Spectral grids for WDM applications: DWDM frequency grid (2002).

G. Ishikawa and H. Ooi, "Polarization-mode dispersion sensitivity and monitoring in 40-Gbit/s OTDM and l0-Gbit/s NRZ transmission experiments," In Proc. Opt. Fiber Commun. Conf. (OFC1998), San Jose, CA, Paper WC5.

The NUTTCP software is the product of B. Fink and is available at ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/latest/nuttcp.html.

H. van Helvoort, Next Generation SONET: Evolution or Revolution (John Wiley and Sons, Ltd., 2005).
[CrossRef]

J. Zweck and C. R. Menyuk, "Detection and Mitigation of Soft Failure due to Polarization-Mode Dispersion in Optical Networks," In Proc. Opt. Fiber Commun. Conf. (OFC2006), Anaheim, CA, Paper OFG5.

H. Kogelnik, R. M. Jopsen, and L. E. Nelson, "Polarization-Mode Dispersion," in Optical Fiber Communications, vol. IVb, I. Kaminow and T. Li, Ed., pp. 725-861 (Academic Press, San Diego, CA, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental network testbed, consisting of an installed fiber link between Baltimore and College Park, Maryland. Signal routing was controlled using the DRAGON User Interface (UI), while end-to-end packet loss was measured using the NUTTCP test program. ES: End Station; VLSR: Virtual Link State Router; SNMP: Simple Network Management Protocol; OADM: Optical Add-Drop Multiplexer; XPDR: Optical Transponder; EDFA: Erbium doped fiber amplifier; SMF: single mode fiber

Fig. 2.
Fig. 2.

(a) Schematic of the PMD sensor, based on detection of the half-bit-rate RF tone. PD: Photodiode; MPD: Microwave power detector. (b) The measured back-to-back sensor response as a function of the DGD emulator setting. For each setting, 100 random input SOPs were used; the worst case output is highlighted as the blue dots.

Fig. 3.
Fig. 3.

Measured packet loss for the 10 Gb/s path as a function of the PMD sensor voltage. A packet loss of 100% indicates that connectivity between end stations could not be established, as determined by an ICMP echo request test. The dashed vertical lines indicate the upper and lower threshold voltage settings of 242 mV and 198 mV, used in subsequent measurements.

Fig. 4.
Fig. 4.

Sensor voltages (upper trace), packet losses (center trace), and unreserved bandwidth (BW) for each channel (lower trace), recorded while the polarization controller settings were varied over time. For all measurements, the sensor’s ability to modify the link metrics was disabled. The emulator DGD settings were (a) 0 ps and (b) 80 ps. The polarization controller was adjusted through the same series of points for both cases.

Fig. 5.
Fig. 5.

Sensor voltages (upper trace), packet losses (center trace), and unreserved bandwidth (BW) for each channel (lower trace), recorded while the polarization controller settings were varied over time. For all measurements, the sensor’s ability to modify the link metrics was enabled. The emulator DGD settings were (a) 0 ps and (b) 80 ps. The polarization controller was adjusted through the same series of points for both cases.

Metrics