Abstract

Multidimensional infrared spectroscopy is a robust tool for studying the structural dynamics of molecules. In particular, two-dimensional infrared (2DIR) spectroscopy can reveal vibrational coupling among the internal modes of molecules, uncovering the transient structure of complex systems. While spectroscopically very powerful, current experimental techniques are time consuming to perform, requiring ~ 106 laser shots for a single 2DIR spectrum. In this work, we demonstrate a new technique that can acquire a full 2DIR correlation spectrum using a single ultrafast laser pulse. This apparatus will allow 2DIR spectroscopy to be extended to systems that were unattainable with previous technology,including, irreversible chemical reactions, rapid flow experiments, or with low repetition rate laser systems.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring absorptive two-dimensional infrared spectra using chirped-pulse upconversion detection

Jessica M. Anna, Matthew J. Nee, Carlos R. Baiz, Robert McCanne, and Kevin J. Kubarych
J. Opt. Soc. Am. B 27(3) 382-393 (2010)

Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm−1 region

Jingyi Zhu, Tilo Mathes, Andreas D. Stahl, John T.M. Kennis, and Marie Louise Groot
Opt. Express 20(10) 10562-10571 (2012)

Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution

Carmella Calabrese, Ashley M. Stingel, Lei Shen, and Poul B. Petersen
Opt. Lett. 37(12) 2265-2267 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Hamm, M. Lim, and R.M. Hochstrasser, “The structure of the amide I band of peptides measured by femtosecond nonlinear IR spectroscopy,” J. Phys. Chem. B, 1026123 (1998).
    [Crossref]
  2. J.B. Asbury, T. Steinel, and M.D. Fayer, “Using ultrafast Infraed multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments,” Chem. Phys. Lett. 381139 (2003).
    [Crossref]
  3. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectoscopy: Molecular Structure and Dynamics in Solution,” J. Phys. Chem. A 1075258 (2003).
    [Crossref]
  4. V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
    [Crossref] [PubMed]
  5. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
    [Crossref] [PubMed]
  6. C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
    [Crossref]
  7. M.F. DeCamp and A. Tokmakoff “Single-shot two-dimensional spectrometer,” Opt. Lett. 31113 (2006).
    [Crossref] [PubMed]
  8. A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A, 1044247 (2000).
    [Crossref]
  9. J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
    [Crossref]
  10. M.F. DeCamp and A. Tokmakoff, “Upconversion multichannel Infrared spectrometer,” Opt. Lett. 301818 (2005).
    [Crossref] [PubMed]
  11. E.J. Heilweil, ”Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiTO3,” Opt. Lett. 14551 (1989).
    [Crossref] [PubMed]
  12. T.P. Dougherty and E.J. Heilweil, “Dual-beam subpicosecond broadband infrared spectrometer,” Opt. Lett. 19129 (1994).
    [Crossref] [PubMed]
  13. K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D.M. Jonas “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 301228 (2005).
    [Crossref] [PubMed]
  14. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier transform spectral interferometry,” Opt. Lett. 21564 (1996).
    [Crossref] [PubMed]
  15. Preliminary experiments have indicated that a 100µm thick piece of MgO:LiNbO3 is partially transparent in the mid-IR spectral regions making upconverion at wavelengths greater than 6µm possible.

2006 (1)

2005 (4)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
[Crossref]

M.F. DeCamp and A. Tokmakoff, “Upconversion multichannel Infrared spectrometer,” Opt. Lett. 301818 (2005).
[Crossref] [PubMed]

K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D.M. Jonas “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 301228 (2005).
[Crossref] [PubMed]

2004 (1)

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
[Crossref] [PubMed]

2003 (2)

J.B. Asbury, T. Steinel, and M.D. Fayer, “Using ultrafast Infraed multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments,” Chem. Phys. Lett. 381139 (2003).
[Crossref]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectoscopy: Molecular Structure and Dynamics in Solution,” J. Phys. Chem. A 1075258 (2003).
[Crossref]

2002 (1)

J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
[Crossref]

2000 (1)

A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A, 1044247 (2000).
[Crossref]

1998 (1)

P. Hamm, M. Lim, and R.M. Hochstrasser, “The structure of the amide I band of peptides measured by femtosecond nonlinear IR spectroscopy,” J. Phys. Chem. B, 1026123 (1998).
[Crossref]

1996 (1)

1994 (1)

1989 (1)

Asbury, J.B.

J.B. Asbury, T. Steinel, and M.D. Fayer, “Using ultrafast Infraed multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments,” Chem. Phys. Lett. 381139 (2003).
[Crossref]

Belabas, N.

Blankenship, R.E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Borca, C.N.

C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
[Crossref]

Bredenbeck, J.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
[Crossref] [PubMed]

Brixner, T.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Cervetto, V.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
[Crossref] [PubMed]

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Cundiff, S.T.

C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
[Crossref]

DeCamp, M.F.

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectoscopy: Molecular Structure and Dynamics in Solution,” J. Phys. Chem. A 1075258 (2003).
[Crossref]

Dougherty, T.P.

Farrow, D.A.

J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
[Crossref]

Fayer, M.D.

J.B. Asbury, T. Steinel, and M.D. Fayer, “Using ultrafast Infraed multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments,” Chem. Phys. Lett. 381139 (2003).
[Crossref]

Fleming, G.R.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Hamm, P.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
[Crossref] [PubMed]

P. Hamm, M. Lim, and R.M. Hochstrasser, “The structure of the amide I band of peptides measured by femtosecond nonlinear IR spectroscopy,” J. Phys. Chem. B, 1026123 (1998).
[Crossref]

Heilweil, E.J.

Helbing, J.

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
[Crossref] [PubMed]

Hochstrasser, R.M.

P. Hamm, M. Lim, and R.M. Hochstrasser, “The structure of the amide I band of peptides measured by femtosecond nonlinear IR spectroscopy,” J. Phys. Chem. B, 1026123 (1998).
[Crossref]

Hybl, J.D

J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
[Crossref]

Joffre, M.

Jonas, D. M.

J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
[Crossref]

Jonas, D.M.

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectoscopy: Molecular Structure and Dynamics in Solution,” J. Phys. Chem. A 1075258 (2003).
[Crossref]

Kubarych, K.J.

Lepetit, L.

Li, X.

C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
[Crossref]

Lim, M.

P. Hamm, M. Lim, and R.M. Hochstrasser, “The structure of the amide I band of peptides measured by femtosecond nonlinear IR spectroscopy,” J. Phys. Chem. B, 1026123 (1998).
[Crossref]

Moore, A.

Steinel, T.

J.B. Asbury, T. Steinel, and M.D. Fayer, “Using ultrafast Infraed multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments,” Chem. Phys. Lett. 381139 (2003).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Tokmakoff, A.

M.F. DeCamp and A. Tokmakoff “Single-shot two-dimensional spectrometer,” Opt. Lett. 31113 (2006).
[Crossref] [PubMed]

M.F. DeCamp and A. Tokmakoff, “Upconversion multichannel Infrared spectrometer,” Opt. Lett. 301818 (2005).
[Crossref] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectoscopy: Molecular Structure and Dynamics in Solution,” J. Phys. Chem. A 1075258 (2003).
[Crossref]

A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A, 1044247 (2000).
[Crossref]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Yu, A.

J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
[Crossref]

Zhang, T.

C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
[Crossref]

Chem. Phys. Lett. (2)

J.B. Asbury, T. Steinel, and M.D. Fayer, “Using ultrafast Infraed multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments,” Chem. Phys. Lett. 381139 (2003).
[Crossref]

C.N. Borca, T. Zhang, X. Li, and S.T. Cundiff, “Optical two-dimensional Fourier transform spectrscopy of semiconductors,” Chem. Phys. Lett., 416311 (2005).
[Crossref]

J. Chem. Phys. (1)

V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys., 1215935 (2004).
[Crossref] [PubMed]

J. Phys. Chem. A (3)

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectoscopy: Molecular Structure and Dynamics in Solution,” J. Phys. Chem. A 1075258 (2003).
[Crossref]

A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A, 1044247 (2000).
[Crossref]

J.D Hybl, A. Yu, D.A. Farrow, and D. M. Jonas, D. M., “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 1067651 (2002).
[Crossref]

J. Phys. Chem. B (1)

P. Hamm, M. Lim, and R.M. Hochstrasser, “The structure of the amide I band of peptides measured by femtosecond nonlinear IR spectroscopy,” J. Phys. Chem. B, 1026123 (1998).
[Crossref]

Nature (1)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R.E. Blankenship, and G.R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434625 (2005).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (1)

Preliminary experiments have indicated that a 100µm thick piece of MgO:LiNbO3 is partially transparent in the mid-IR spectral regions making upconverion at wavelengths greater than 6µm possible.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

2DIR spectrometer. G is diffraction grating, SL is a spherical focusing mirror, CL is a cylindrical lens, BS is a beamsplitter, and MLN is the upconversion crystal.

Fig. 2.
Fig. 2.

2DIR spectra of WHC in (a) chloroform and (b) hexane. The corresponding FTIR spectra of each system are shown above the 2D spectra. Each spectra was averaged from 105 laser shots.

Fig. 3.
Fig. 3.

2DIR spectra of RDC in hexane acquired by averaging 105 laser shots. Each contour level corresponds to a change in transmission of 0.1mOD.

Fig. 4.
Fig. 4.

Time series of 2DIR difference spectra of WHC in hexane using (a) 1 (b) 16 (c) 256 (d) and 4096 pump-probe pulses.

Metrics