Abstract

Two-dimensional photonic crystal defect lasers in InGaAsP membranes directly bonded to a SiO2/Si substrate have been demonstrated. Lasing at wavelengths near 1550 nm was obtained with incident threshold pump powers as low as 1.5 mW. Good agreement between experimental data and three-dimensional finite-difference time-domain (FDTD) simulation was achieved. The thermal impedance of this laser is also characterized.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
    [Crossref]
  2. M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.
  3. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
    [Crossref]
  4. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
    [Crossref] [PubMed]
  5. P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
    [Crossref]
  6. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
    [Crossref] [PubMed]
  7. J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
    [Crossref]
  8. M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
    [Crossref]
  9. J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
    [Crossref]
  10. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
    [Crossref]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
    [Crossref] [PubMed]
  12. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11,2927 (2003).
    [Crossref] [PubMed]
  13. D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
    [Crossref]
  14. A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
    [Crossref]

2006 (4)

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

2005 (2)

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
[Crossref] [PubMed]

2004 (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

2003 (2)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11,2927 (2003).
[Crossref] [PubMed]

2002 (1)

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

2000 (1)

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

1999 (1)

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

1996 (1)

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

Albert, J.P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Allee, D. R.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Bagheri, M.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Bowers, J. E.

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Cao, J. R.

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Chandramani, P.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Chirovsky, L. M. F.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Choi, S. -J.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

Choi, S.J.

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

Choi, S.-J.

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Cohen, O.

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

D’Asaro, L. A.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

d’Yerville, M.L.V.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Dapkus, P. D.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Dapkus, P.D.

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

Droopad, R.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

Fang, A. W.

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Farrell, S.

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Goossen, K. W.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

Han, I.Y.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Hobson, W. S.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Hui, S. P.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Hwang, J. K.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Jang, D.H.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Kuang, W.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Lee, P.-T.

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

Lee, Y.H.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Lipson, M

Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
[Crossref] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

Lopata, J.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Lu, L.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

Maracas, G. N.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

Mathine, D. L.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

McNab, S. J.

Mock, A.

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Moll, N.

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Nejad, H.

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

O’Brien, J. D.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

O’Brien, J.D.

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

Paniccia, M. J.

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

Park, H.

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Park, H.K.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
[Crossref] [PubMed]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

Rozier, R. G.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Ryu, H.Y.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
[Crossref] [PubMed]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Shih, M. H.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Song, D.S.

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

Suh, N.-K.

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

Vlasov, Y. A.

Walker, J. A.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Wei, Z. -J.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

Wei, Z.-J.

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
[Crossref] [PubMed]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Yang, T.

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

Yu, H.

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

Appl. Phys. Lett. (2)

P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81,3311 (2002).
[Crossref]

D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett. 69,463 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M.L.V. d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer,” IEEE J. Quantum Electron. 39,419 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (5)

A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

J. R. Cao, W. Kuang, Z.-J. Wei, S.J. Choi, H. Yu, M. Bagheri, J.D. O’Brien, and P.D. Dapkus, “Sapphirebonded photonic crystal microcavity lasers and their far-field radiation patterns,” IEEE Photon. Technol. Lett. 17,4 (2005).
[Crossref]

M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z. -J. Wei, S. -J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental Characterization of the Optical Loss of Sapphire-Bonded Photonic Crystal Laser Cavities,” IEEE Photon. Technol. Lett. 18,535 (2006).
[Crossref]

J. K. Hwang, H.Y. Ryu, D.S. Song, I.Y. Han, H.K. Park, D.H. Jang, and Y.H. Lee, “Continuous roomtemperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” IEEE Photon. Technol. Lett. 12,1295 (2000).
[Crossref]

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “A Continuous-Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18,1143 (2006).
[Crossref]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. J. Paniccia, “A continuous-wave Raman silicon laser,” Nature, 433,725 (2006).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, 435,325 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Science (2)

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Crystal Defect Laser,” Science, 284,1819 (1999).
[Crossref] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically Driven Single-Cell Photonic Crystal Laser,” Science 305,1444 (2004).
[Crossref] [PubMed]

Other (1)

M. H. Shih, M. Bagheri, A. Mock, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic Photonic Crystal Lasers in InGaAsP on a SiO2/Si Substrate,” The 11th OptoElectronics and Communications Conference (OECC 2006), July 2006, Kaohsiung, Taiwan.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of a two-dimensional photonic crystal defect cavity on a SiO2/Si substrate.

Fig. 2.
Fig. 2.

Scanning electron micrograph (SEM) of a photonic crystal cavity on a SiO2/Si substrate from an angled view. The cavity is formed in the region in which 37 holes are missing from the photonic crystal lattice.

Fig. 3.
Fig. 3.

(a)The lasing spectrum of a D4 photonic crystal cavity on a SiO2/Si substrate. The lasing wavelength is 1541.7 nm. (b)The incident power versus the output power (L-L) curve for this cavity. The threshold power is about 1.5 mW.

Fig. 4.
Fig. 4.

(a)The lasing spectra of four D4 photonic crystal cavities on a SiO2/Si substrate with lattice constants of 392, 396, 398 and 400 nm. (b)The plot for lasing wavelength versus lattice constants of the D4 cavities. The grey line is from a linear fitting for the data.

Fig. 5.
Fig. 5.

Comparison of the measured spectrum and the modeled spectrum. The blue line is a lasing spectrum from a D4 photonic crystal laser on a SiO2/Si substrate, and the grey spectrum is the calculated resonance wavelengths with Q values for this cavity.

Fig. 6.
Fig. 6.

The lasing wavelength of a D4 photonic crystal laser on a SiO2/Si substrate versus the optical pumping power. The slope is 0.55 nm/mW for this cavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 R Th = Δ T Δ P = Δ λ Δ P Δ T Δ λ

Metrics